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Abstract

To enable the use of Internet networks without compromising the safety of clients

or servers, we must develop safeguards against malicious behaviour. However, due to

the potentially immense volume of traffic flowing across a given network as well as the

wide variety of behaviours that threaten the availability, confidentiality and integrity of

network data, it is necessary to develop intrusion detection techniques that are auto-

mated and capable of generalising the concept of unwanted behaviour. Therefore, there

is considerable research interest in the development of machine-learning-based classi-

fiers of malicious behaviour. However, collecting the network traffic needed to train

these classifiers from human participants is often cumbersome, time-prohibitive and

may introduce ethical issues. Instead, researchers may opt to use artificially generated

traffic to train machine-learning-based systems, however, these datasets are still lack-

ing; the traffic data is far too noisy, leading to an insufficiently accurate ground truth.

The creation of a framework capable of generating quality datasets in a manner that

circumvents these issues would be extremely beneficial to the protection of network

services.

In this report, we present the design and implementation of a framework for the

development of such datasets using Docker. This framework consists of a series of

scripted scenarios capable of generating both benign and malicious traffic with cov-

erage comparable to existing network intrusion datasets. Furthermore, to demonstrate

the advantages of such a framework, we generate several network traffic datasets and

perform a series of experiments exploring traffic classification using inter-arrival times

and the notion of spacial bias within anomaly detection datasets.
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Chapter 1

Introduction

One of the primary challenges in developing machine-learning-based intrusion detec-

tion systems is the dearth of quality datasets. Well-designed datasets are such a rarity

that researchers often evaluate intrusion detection systems on datasets that are well

over a decade old [45] [25], calling in to question their effectiveness on modern traffic

and attacks. In particular, it is prohibitively difficult to gather network traffic that is

representative of real-world network traffic, free from ethical problems and suitable

for training intrusion detection systems. Simply monitoring the network traffic pro-

duced by several individuals during their normal internet usage introduces a host of

difficulties involving the potential leaking of sensitive, personal data — such as pass-

words, email addresses, usage habits, etc. —, requiring researchers to expend time

anonymising the dataset [30].

Instead, researchers may opt to build datasets from traffic produced by virtual ma-

chines communicating across a virtual network. However, this leads to datasets with

an insufficiently accurate ground truth. The network traffic produced by a typical PC

or other device can be thought of as being noisy. Datasets consisting of such traf-

fic will invariably contain traffic originating from background processes, such as soft-

ware checking whether an update is available, authentication traffic, network discovery

services, advertising features, network configuration protocols as well as many other

sources. As this noise is difficult to filter out, many datasets are improperly labelled.

Furthermore, most modern datasets are static in their design, unable to be modified

or expanded. This proves to be a serious defect as the ecosystem of intrusions is

continually evolving. Therefore, the performance of an intrusion detector that is trained

on such a dataset will invariably degrade over time. To prevent this, new datasets must

be periodically built from scratch and the model retrained.

1



Chapter 1. Introduction 2

Developing a framework that allows researchers to create datasets that circumvent

these issues would be extremely beneficial. We propose that this can be done us-

ing Docker [20]. Docker is a service for developing and monitoring containers, also

known as OS-level virtual machines. Each Docker container is highly specialised in

its purpose, generating traffic related to only a single application process. Therefore,

by scripting a variety of Docker-based scenarios that simulate benign or malicious be-

haviours and collecting the resultant traffic, we can build a dataset with perfect ground

truth. Furthermore, these scenarios could be continually enhanced and expanded, al-

lowing for the easy creation of datasets containing modern, up-to-date traffic and at-

tacks.

This is the primary goal of this work. Furthermore, we demonstrate the utility of

this framework by performing a series of experiments: one that measures the realism

of the network traffic produced by our Docker scenarios and two that would be difficult

to perform using a conventional dataset.

Our main contributions are the following:

• We develop numerous Docker scenarios that simulate either benign or malicious

behaviour and automatically record all network traffic produced in the interac-

tion. Furthermore, we gather this traffic into a large intrusion detection dataset.

• We investigate techniques to emulate realistic network conditions over the Docker

virtual network. We then demonstrate the efficacy of these techniques, showing

that our Docker traffic behaves sufficiently similar to ’real’ traffic.

• We develop a simple dataset to investigate the effectiveness of using packet inter-

arrival times as a feature in an intrusion detection system, showing how the per-

formance of this classifier degrades when tested on traffic from a greater variety

of network conditions.

• We develop another dataset to demonstrate and investigate the problem of spa-

cial bias in network intrusion datasets.

A review of the relevant background is given in Chapter 2. In Chapter 3, we dis-

cuss the design and implementation of our Docker scenarios as well as best practises

for building our datasets. Chapter 4 details the methodology of our experiments and

Chapter 5 details their results as well as our evaluation of our Docker framework.

Finally, in Chapter 6 we discuss and critique our achievements, discussing potential

future work.



Chapter 2

Background

2.1 Virtualisation & Containers

Virtualisation refers to multiple, isolated operating systems — known as guest OSs, or

virtual machines (VMs) — sharing the same hardware infrastructure — known as the

host machine. VMs necessitate the use of hypervisors, which is software responsible

for sharing the host OS’s hardware resources, such as memory, storage and networking

capabilities. OS-level virtualisation, also known as containerisation, is a virtualisation

paradigm that has become increasingly popular in recent years due to its lightweight

nature and speed of deployment. In contrast to the methodology outlined above, where

a hypervisor allocates hardware to the VMs, containers forego a hypervisor and the

shared resources are instead kernel artifacts. Although this prevents the host environ-

ment from running different operating systems — for instance, a Linux host can only

run Linux containers — OS-level virtualisation incurs minimal CPU, memory and net-

working overhead whilst maintaining a great deal of isolation [26]. The high-level of

isolation between both the host OS and any containers running on that host as well

as between the containers themselves is of paramount importance for the purposes of

this dissertation as it allows us to run software that could potentially compromise the

security of the system it is running on with negligible worry [39].

2.1.1 Docker

Docker Images In Docker’s terminology, a container is a single, running instance of

a Docker image. In turn, there are two major categories of image: those which have

been built by modifying and extending already existing images — known as parent

3



Chapter 2. Background 4

images — and those which have been developed from scratch inheriting no instructions

from previously built images — known as base images.

Base images typically consist of Unix-like operating system whose primary pur-

pose is to act as a environment for further software to be installed. These base images

include all of the libraries and tools that are typically shipped with these operating

systems.

Most images are not base images but use a parent image which serves as a template.

Users alter this template when first building the image by running a series of commands

which may, for instance, consist of transferring software from the host machine to

the image, downloading dependencies or exposing ports. This allows for software to

be shipped with all of its requirements and, therefore, the container is a standardised

environment in which the software can be executed.

Dockerfile The specifications of a Docker image are defined in a text file known

as Dockerfile which allows Docker to automatically build images. Every Dockerfile

consists of an initial FROM command which indicates the parent image — or FROM

scratch for base images. Following this, modifications are made to the base image via a

series of further instructions, such as COPY to copy files from the host system, RUN to

execute command line arguments or ENTRYPOINT to specify a command that should

be executed each time the container is started.

Each instruction builds an intermediate, read-only image, known as a layer, whose

filesystem is stacked upon the one below. Docker utilises a union mount filesystem

which allows layers to be reused, saving disk space and improving the build speed

of images. Finally, a docker container has a final read/write layer — known as the

container layer — on top of the underlying layers. This degree of separation between

layers allows the user to add, alter and delete files from the container layer whilst

preserving the integrity of the Docker image.

Figure 2.1: Basic Dockerfile for Tcpdump Container
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Docker Hub The Docker software platform includes a cloud-based repository called

the Docker Hub [22] which allows users to download and build open source images on

their local computers. At the time of writing, nearly 2.5 million images are available

from Docker Hub. These include various operating systems — such as Ubuntu, De-

bian and Alpine — and software packages — such as Apache, Nginx and MongoDB.

However, we avoid downloading images from Docker Hub as this introduces massive

security risks; we can’t verify the contents of these binaries and malicious actors have

previously spread malware via Docker Hub [29]. Instead, many images on the hub

are built from linked, open-source repositories on Github. We limit ourselves to these

images as we can build from the source Dockerfiles ourselves.

Docker Networking Upon installation, Docker automatically creates three networks:

None, Host and Bridge. Of these networks, only the Bridge network is of any relevance

for this project as it allows us to securely run Docker containers with networking ca-

pabilities and in isolation. Containers attached to the Bridge network are assigned an

IP address and are able to communicate with any other container on the network. We

can create our own user-defined Bridge networks, which Docker’s documentation rec-

ommends as it provides greater isolation and interoperability between containers [21].

Furthermore, this allows us to set the subnet and gateway for our networks as well as

the IP addresses of our containers, which simplifies scripting our scenarios consider-

ably.

Docker-Compose Files Often, applications built using the Docker framework need

more than one container to operate — for example, an Apache server and a MySQL

server running in separate containers — and it is therefore necessary to build and de-

ploy several interconnected containers simultaneously. Docker provides this function-

ality via docker-compose, a tool that allows users to define the services of multiple

containers as well as the properties of their virtual network in a YAML file. By de-

fault, this file is named docker-compose.yml. This allows for numerous containers to

be started, stopped and rebuilt with a single command. We can also make some limited

modifications to our images in the YAML file, such as sharing volumes, exposing ports

and adding commands to be run on start up. Due to the ease of starting several con-

tainers at once as well as defining their behaviour from a single docker-compose file,

this will be our primary method of deploying our containerised scenarios. We include

an example docker-compose file below.
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1 version: '3'

2 services:

3 ping:

4 image: 'detlearsom/ping'

5 container_name: ping-container

6 environment:

7 - HOSTNAME=google.com

8 - TIMEOUT=2

9 tcpdump:

10 image: 'detlearsom/tcpdump'

11 volumes:

12 - '\$PWD/data:/data'

13 command: not(ip6 or arp or (udp and (src port 5353 or

14 src port 57621))) -v -w

15 "/data/dump-010-ping-\${CAPTURETIME}.pcap"

16 network_mode: 'service:ping'

2.2 Malicious Behaviour and its Detection

Malicious behaviour can approximately be defined as any unwanted action or sequence

of actions that threatens the availability, confidentiality or integrity of a user’s data or

hardware. Generally, computers and networks are secured against malicious behaviour

by having systems in place that attempt to verify a user’s identity before authenticating

them at a given level of privilege. A user that bypasses this somehow is said to be an

intruder or attacker of the computer system or network.

These protections are further fortified using a variety of technologies for preventing

and detecting malicious behaviour. Firewalls prevent malicious actors from accessing

a network by blocking network connections according to predefined rules. In con-

trast, Intrusion Detection Systems (IDSes) monitor network traffic to identify and stop

intrusions that have successfully breached the network.

Prior to the development of machine-learning-based software for the detection of

malicious behaviour, intrusion classification techniques could be split into two broad

categories: signature-based methods and anomaly-based methods. These methods at-
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tempt to classify intrusions based on a series of manually coded criteria. For signature-

based methods, this involves classifying actions as malicious if they look sufficiently

similar to previous described malicious actions [46]. In contrast, anomaly-based meth-

ods involve defining the bounds of acceptable behaviour for a computer system and

flagging any behaviour that defies those boundaries [16].

There are myriad ways in which a malicious actor can violate the security of a com-

puter system or network and so there are numerous ways in which signature-based and

anomaly-based detectors fail to accurately classify malware. Anomaly-based methods

generalise better, more frequently preventing as-of-yet undefined malicious behaviour

from occurring. However, they are more prone to false positives, potentially disrupting

the execution of benign agents or software. Conversely, signature-based methods often

fail to generalise, allowing novel exploits to bypass the detector and wreak havoc.

Furthermore, the intrusion ecosystem is constantly evolving, with various exploits

and vulnerabilities continually coming into existence. Because of this, although IDSes

perform highly when first tested, often with levels of accuracy exceeding 95%, their

performance often degrades with time as new exploits are developed or discovered

[12]. The definitions dictating the behaviour of anomaly-based and signature-based

detectors must be repeatedly updated.

We need to develop robust intrusion detection techniques that are capable of learn-

ing a more general notion of what it means for an actor to be in violation of the security

of a system. Machine learning techniques appear to be a natural candidate for such a

classifier and, as such, most research in recent years has been focused on the develop-

ment of machine-learning-based IDSes.

2.2.1 Machine learning-based techniques

A wide variety of machine learning-based intrusion detection systems have been pub-

lished including Naive Bayes [34] , Random Forests [48] and Neural Networks [28].

Although these methods vary in their implementation, accuracy rates are broadly con-

sistent across the algorithms with the previously cited papers reporting accuracies of

97.78%, 94.8% and 100% respectively. Instead, in order to optimise performance and

robustness, it is necessary to choose informative and discriminating features.

The use of machine-learning techniques for the purposes of intrusion detection has

been criticised. Although machine-learning classification has seen a great deal of suc-

cess in other fields of research, such as computer vision and spam detection, Sommer et
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al. [43] identify several manners in which machine learning-based intrusion detection

differs from these other areas in a way that reduces its effectiveness. Primarily, Som-

mer et al. purport that although machine-learning techniques have seen a great deal of

success in identifying similarities between data, the concept of identifying abnormal-

ities in data, as an IDS is expected to do, is a similar but distinct task. Moreover, they

claim that it is difficult to develop a machine learning-based IDS that can recognise the

fundamental difference between an unusual behaviour, which may be entirely benign,

and malicious behaviour, a subset of unusual behaviour that is actively trying to harm

the system.

2.2.2 Existing Datasets & Criticism

There are already some datasets containing a mixture of benign and malicious traffic to

test and train machine-learning approaches, captured using tools such as tcpdump or

Wireshark. Such datasets attempt to emulate the network patterns found in ’real-world’

internet traffic in order to provide researchers with a reasonable approximation of how

a malware classifier may perform when deployed in a public environment. However,

the development of such datasets are marred by several difficulties and have seen a

wealth of criticism. As discussed by Sperotto et al. [44], simply monitoring the us-

age of several internet users and collecting the resultant traffic into a single dataset,

although possible, introduces serious ethical concerns due to the large amount of sen-

sitive or personally identifiable information that average internet users transmit during

daily use — such as passwords, GPS coordinates, private material.

To avoid this complication, researchers often use statistical approximations of real-

world traffic to build such datasets. However, it is unclear to what extent such ap-

proximations actually resemble real-world traffic. For instance, it is unclear what the

ratio of benign to malicious traffic should be as it is unknown what this ratio is in the

real-world. Allix et al. [2] claim that the standard work-flow for developing machine-

learning systems — namely, collecting large amount of data and then training the al-

gorithm on that data — is necessarily flawed when applied to the domain of intrusion

detection. They contend that the inherent secrecy of the intrusion ecosystem and the

rate at which it develops make it is impossible to develop a dataset containing, say,

network traces of intrusions that are currently being deployed by malicious agents. In-

stead, one can only build a dataset containing previously discovered attacks. As such,

they suggest that it is impossible to release a static dataset that is truly representative
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of the real-world, impeding the performance of machine-learning-based classifiers.

Furthermore, many network traffic datasets are not comprehensively labelled. Even

if only a single process is initiated by the user, VMs generate additional traffic from

a variety of background processes, such as software querying servers to check for up-

dates, resulting in aggregated application flows between processes. This necessitates

the use of ground truth generation tools to classify flows. However, current meth-

ods of establishing the ground truth of network traffic datasets are well-known to be

fallible[11]. These are port-based methods, which classify traffic flows based on their

port numbers, and deep-packet inspection (DPI) based methods, which classify flows

based on analysis of their packet payloads. Port-based methods are unreliable due to

the dynamic allocation of ports, several services sharing the same port and processes

running on atypical ports. Moreover, although DPI-based methods are capable of in-

specting the entirety of a packets contents, their performance has also shown to be

lacking. Bujlow et al. [10] have shown that many commonly used DPI-based meth-

ods for ground-truth generation fail to classify packets, with some methods failing to

classify common protocols such as HTTP and FTP with less than 10% accuracy. In

contrast, it is trivial to produce a fully-labelled dataset from our Docker framework.

CIC-IDS 2017 [40], released by the Canadian Institute for Cybersecurity, is the

primary dataset that we shall compare our results to. The dataset was created by mon-

itoring the network activity of several virtual machines running a series of scripted

scenarios. The majority of these virtual machines produced exclusively benign traffic

whilst others were designated as attackers, producing malicious traffic. Moreover, the

exploit scenarios contained within the dataset are moderately recent, including botnets,

cross-site scripting attacks and SQL injections. Furthermore, the dataset is far larger

than many similar datasets, consisting of five sub-datasets captured over the course

of a working week. Capturing traffic over such a lengthy period of time allows for

the temporal development of attack scenarios to take place over several days, more

accurately mimicking an intruder’s movement through the network. CIC-IDS 2017,

however, does not address the problems discussed in this section.

2.2.3 Packet Inter-Arrival Times

We introduce the notion of packet inter-arrival times (IATs), defined as the time be-

tween sequential packets, as this will form a fundamental part of demonstrating that

our Docker framework is capable of producing data that resembles real-world traffic.
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The statistical distribution of packet inter-arrival times is dependant on the quality of

the network and, as such, the distributions used to model network traffic have evolved

as network bandwidth speeds have improved. Although early research focused on

modelling network traffic via a Poisson distribution [15] , such techniques have lost

their relevancy as analysis of packet IATs has improved. In particular, experimental

results suggests that the IATs of network packets follow a heavy-tailed distribution

that exhibits self-similarity [13]. These terms are defined as follows: given a non-

negative random variable X , it’s distribution F(x) = P(X ≤ x) is said to be heavy-tailed

if F̂ = P(X > x)> 0 and ∀x,y≥ 0 then

limx→∞P(X > x+ y|X > x) = limx→∞

F̂(x+ y)
F̂(x)

= 1

Furthermore, given a zero-mean, stationary time series X = (Xt ; t = 1,2,3...), the

m-aggregated series X (m) = X (m)
k ;k = 1,2,3...) is defined by summing X into non-

overlapping blocks of length m. We then say X is H-self-similar if

Xt := m−H
tm

∑
i=(t−1)m+1

Xi∀mεN

That is, X is H-self-similar if each sub-distribution Xm has the same distribution as X

when scaled by mH .

In particular, Paxson et al. [35] demonstrated that non-self-similar distributions fail

to account for the ’burstiness’ of network traffic as self-similarity is a necessary prop-

erty to allow for network bursts of arbitrary length to occur. The following self-similar,

heavy-tailed distributions are typically used to model traffic in a modern setting:

Pareto Distribution:

F̂(x) = x−α,α > 0

Weibull Distribution:

b
a
(

x
a
)b−1e

−x
a b

where a and b are defined as the scale and shape parameters respectively. In particular,

there is considerable experimental evidence suggesting that the Weibull distribution

is better than the Pareto distribution at modelling packet IATs [3] [4] . We use these

distributions in section 4.2 to model artificially generated traffic.



Chapter 3

Design & Implementation of Docker

Containers

3.1 Requirements

The primary task of this project is to develop a suite of Docker containers capable

of producing traffic suitable for training a machine-learning-based intrusion detection

system. For each Docker container, we want a series of corresponding capture scenar-

ios. Running a given capture scenario triggers the creation of several Docker contain-

ers, each with a scripted task specific to that capture scenario. For example, a capture

scenario may consist of a containerised client pinging a containerised server. Further-

more, we ensure that each Docker container in a scripted scenario that either produces

or receives traffic will be partnered with a tcpdump container, allowing us to collect

the resulting network traffic from each container’s perspective automatically. We wish

to publish this framework to a wider audience, allowing for further modification. To

achieve this goal, we introduce the following key design principles:

• Requirement 1 - To ensure that we produce representative data for modelling,

we want the traffic generated by our container suite to consist of a good number

of protocols that are commonly found in real-world traffic and existing datasets.

• Requirement 2 - For each protocol, we want to establish several capture sce-

narios to encompass the breadth of that protocol’s possible network traces. For

instance, if we consider a capture scenario consisting of a client downloading

various webpages over SSL, it is not enough to only include traffic from suc-

cessful connections. We must also include several scenarios where the client

11
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fails to download the aforementioned webpage because of a misspelled address

or missing certificate. Whenever possible, we also want to capture WAN traffic.

• Requirement 3 - For malicious traffic, we want to ensure that the attacks are

varied, both in purpose and in network footprint, and relatively modern.

• Requirement 4 - We want the capture scenarios to be, on some level, determinis-

tic. We discuss what it means for a scenario to be deterministic in section 3.2.4.

• Requirement 5 - Once a capture scenario is initiated, we want to ensure that the

scenario plays out with no further interaction from the user.

3.2 Design for Requirements

3.2.1 Requirement 1 - Coverage of Protocol Types

As discussed previously, our primary aim is the development of a network traffic

dataset for training IDSes. Therefore, in deciding how we should expand the Detlear-

som benign scenarios, we initially investigated the protocols and applications present

in existing network traffic datasets. Our analysis included CIC-IDS 2017 [40], UNSW-

NB15 [31], ICSX Botnet [7] and Mawi [14]. We chose these datasets as they provide

.pcap files of their network traffic which enables us to more easily see what protocols

are present. To do this, we used the Bro IDS tool to generate log files, listing the results

in table 3.1.

PROTOCOL UNSW-NB15 ISCX CIC-IDS 2017 MAWI (2019-7-31)

HTTP 196195 2372 276405 156179

SSL 540 141 285760 591551

DNS 372748 200009 1820105 1581858

X509 459 331 2758590 UNKNOWN

FTP 111685 1989 5540 278

SSH 31320 434 5600 5503

IRC 202 27 0 UNKNOWN

SMTP 44455 125 0 4601

Table 3.1: Bro Log Flow Count

The protocols listed in table 3.1 make up over 90% of the benign traffic in these

datasets. Moreover, although the ratio of protocols in datasets can differ significantly,
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we see some patterns: namely, protocols associated with general browser usage —

such as HTTP, SSL, DNS — are the most common in each dataset.

We could base the ratios of protocols in our own dataset off of those found in

an existing dataset where the traffic has been artificially generated. However, this

would be problematic. In the case of CIC-IDS 2017, some protocols that make up

a substantial amount of real-world traffic are glaringly omitted — such as bittorrent

or video streaming protocols. In contrast, although UNSW-NB15 contains a better

range of protocols, only a small percentage of their web traffic is transmitted over

SSL which is completely unrepresentative of real-world traffic. Furthermore, in both

these datasets, it appears that a non-negligible amount of traffic is the result of remote

desktop protocols being used to interact with the virtual machines generating data,

such as X11, VNC and RDP, which we consider to be unwanted noise. Instead, we

opt to use these datasets as a rough guideline for constructing datasets but not closely

following any one in particular.

3.2.2 Requirement 2 - Variation within Protocols

Often, datasets contain traffic from a given protocol but the manner in which that proto-

col in used is highly-restricted and it is unclear if this traffic is representative of its real-

world equivalent usage. For instance, in CIC-IDS 2017 the vast majority of successful

FTP transfers consist of a client downloading a .txt file containing the Wikipedia page

for ’Encryption’ several hundred times in a day. Therefore, it is possible that an IDS

trained on CIC-IDS 2017 may trigger a false positive when, say, a larger file is down-

loaded over FTP due to the difference in the duration or backwards packet length of the

flows. Moreover, we would hope that an IDS would be capable of detecting both suc-

cessful and unsuccessful intrusions. We aim to avoid this problem, when applicable,

by including several variations for a given protocol or scenario, including unsuccessful

attacks.

3.2.3 Requirement 3 - Inclusion of Malicious Traffic

To construct datasets which comprehensively describe anomalous traffic, our capture

scenarios should contain a diverse range of attacks. To do this, we chose to incorporate

exemplar attacks from a variety of attack types. Namely, we hope to include at least

Denial of Service (DoS), Bruteforcing, Data Exfiltration, Botnets and Web attacks.

We chose these categories as these attack types are commonly found in other datasets



Chapter 3. Design & Implementation of Docker Containers 14

and have the potential to cause serious disruption to a system. Moreover, the network

footprint of these attacks have a wide range; whilst a DoS attack may involve sending

several gigabytes of traffic to a victim, a data exfiltration attack may involve sending

only a single command.

3.2.4 Requirement 4 - Deterministic Scenarios

It is impossible to guarantee that each scenario will produce a truly ’deterministic’, or

repeatable, output due to differences in network conditions, computational times and

randomization. For instance, randomizing the order in which file transfers take place.

However, it is important that each run of a scenario produces comparable results. We

could describe the data produced by our scenarios as being ’reproducible’ — i.e. we

allow for some margin of error between the datasets — but this doesn’t fully capture

the property we desire. Instead, we aim for our data to be deterministic up to network-

ing and computational differences. This means that when running a scenario multiple

times, we’d expect most equivalent packets to be largely identical, barring IATs i.e.

they are deterministic up to networking differences. However, we’d also expect peri-

ods of greater variation in packet IATs, sizes and content due to non-determinism in

the underlying protocols such as, say, two runs of an SSH scenario exchange keys of

different lengths i.e. they are deterministic up to computational differences.

3.2.5 Requirement 5 - Automated Capture

It is relatively straightforward to automate the interactions between containers using

the docker-compose file. The volumes command allows us to share scripts with each

container and the command command allows us to execute them on container start-up.

Although we can specify the order containers are started in using depends on, this

sometimes is not enough to fully script a scenario. In these cases, we use docker

exec to execute code during the operation of the container.

3.3 Dataset Collection

As discussed in section 2.2.2, the datasets that are currently used to train and evalu-

ate network intrusion detection systems are lacking. The dearth of quality datasets has

been criticised by several commentators such as Tavallaee et al. [45] and Sommer et al.

[43], the latter of which stated that the ”most significant challenge an evaluation faces
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is the lack of appropriate public datasets for assessing anomaly detection systems”.

Due to the fact that static datasets reflect real-world anomalous traffic only for a brief

time frame, Shiravi et al. [42] suggests that datasets should be dynamically generated

allowing for new data to be introduced to maintain their longevity. We believe that a

Docker framework adhering to the design principles outlined in section 3.1 reasonably

fits these demands as it is possible to continually expand it by developing new scenar-

ios. In a similar vain, Sommer et al. stress the importance of using multiple datasets

with different attack patterns to evaluate the robustness of an intrusion detection sys-

tem and its ability to detect as-of-yet unknown anomalies. Again, we feel as though

the Docker framework addresses these concerns, as one can generate multiple datasets

whilst have full control over the attacks and protocols contained within each.

Shiravi et al. identify five characteristics that are necessary for a dataset to be

considered adequate. Namely, these are a realistic network and traffic, fully labelled

intrusions, total interaction capture — meaning that all traffic within LANs is captured

—, complete capture — meaning that the dataset is free form any sanitation — and

diverse intrusion scenarios. These are the standards that we shall use to evaluate our

dataset.

3.4 Implementation

3.4.1 Implementation of Tooling

Because the network traffic between Docker containers takes place on an isolated, vir-

tual network, the network conditions far exceed those found in the real-world. For in-

stance, we measured network throughput across a docker bridge network using iperf[17]

and found that the bandwidth rate surpassed 90Gbits/s.

Figure 3.1: Iperf output on a Docker bridge network with 3 parallel threads

As such, it was necessary to develop scripts capable of emulating more realistic

network conditions. This was possible using tc-netem [18], a suite of tools that ex-

pand the Linux traffic control facilities which allow for the addition of network delays,

packet loss and rate limiting to a network interface. Although we could use tc-netem
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directly in order to apply these settings to the entire docker network, we felt that this

didn’t provide us with sufficiently granular control over each individual container as

it would only allow us to apply the same settings to every single running container.

Therefore, it was necessary to develop a series of wrapper scripts for each tc-netem

command that would allow us to apply these settings to an individual container’s vir-

tual ethernet.

3.4.2 Prior Scenarios

Name Description

Ping A client pinging a DNS server

Nginx A client accessing an Nginx server over HTTP and HTTPS

Apache A client accessing an Apache server over HTTP and HTTPS

SSH A client communicating with an SSHD server over SSH

vsftpd A client communicating with a vsftpd server over FTP

Scrapy A client scraping the University of Edinburgh website

Syncthing 3 clients synchronise files with one another via Syncthing

mailx A mailx instance that sends emails over SMTP

IRC 2 IRC clients communicate via an IRCd server

Table 3.2

Prior to my work on this project, several Docker containers with a very similar purpose

to that of this dissertation were built as part of the Detlearsom project [5]. These con-

tainers were designed to primarily produce network traffic data of fundamental internet

protocols. Moreover, the network traffic generated by these container suites consisted

of entirely benign traffic. The design of these containers broadly fit in with our design

philosophy moving forward with the Detlearsom project and thus formed the bedrock

of our work expanding the protocols and scenarios covered. These previous container-

ised scenarios are listed in table 3.2.

3.4.3 Implementation Process

The implementation process for our Docker containers followed broadly the same out-

line for each scenario.

1. Firstly, we draw up a broad outline of a given protocol, scenario or attack. We

then identify the primary container for a given scenario, which we defined as any
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containerised server and/or intentionally vulnerable application, before creating

and building a Dockerfile containing all necessary dependencies.

2. We now run this container which allows us to develop the scripts necessary to

enact the desired behaviour from the host machine. For instance, if the primary

container is a vulnerable server and we want to capture the traffic from a DoS

attack, we ensure that such an attack is possible by launching it from the host

machine initially.

3. Having scripted the behaviour of the secondary containers from the host ma-

chine, we simply need to build Dockerfiles which download and install all nec-

essary dependencies before transferring any scripts to their respective containers.

4. We then create a docker-compose file that launches all containers simultaneously

and executes all necessary commands. Finally, we develop a script that, upon

running, calls this docker-compose file and allows the user to specify the various

parameters of the scenario — for instance, how many times a scenario should be

run and how long each scenario should be run for.

Following the Docker best practise guidelines [19], each Docker container in our

framework consists of a single service with a specialised purpose, with as few ad-

ditional dependencies as possible. When possible, we will opt to use Alpine Linux as

our base image to house our containers, which is far more lightweight than Ubuntu

or Debian as this improves the scalability of our scenarios. Moreover, we ensure that

there are minimal inter-dependencies between the containers of a scenario. This al-

lows us to easily modify and update our containers as new versions of the underlying

software are released with minimal interference with other containers.

3.4.4 Simple Example Scenario - FTP server

We shall review the design of a prototypical capture scenario, namely, an FTP server

and client interaction. The entire interaction is initiated by a single script, which allows

the user to specify the length of the interaction, the number of times the interaction

takes place as well as the specific scenario that should govern the interaction at runtime.

Upon specifying these parameters, the script then generates a random ftp username and

password, creating the necessary User directory on the host machine before calling the

docker-compose file which creates a user-defined bridge network. Subsequently, the
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Figure 3.2: Diagram of our FTP scenario

necessary containers are then started which, in this case, consist of a vsftpd server,

a client with ftp installed and two containers running tcpdump to capture all of the

traffic emitted and received by the client and server respectively into separate .pcap

files. These .pcap files are then sent to the host machine via a shared data directory. In

addition, the host machine also shares:

• A dataToShare volume containing files that can be downloaded by the client.

• The User directory with the server — which contains the same files as the

dataToShare folder.

• An empty recieve folder with the client into which the files will be downloaded.

• The random username and password is also shared with the client container to

allow it to authenticate itself with the server.

Up to this point, no network traffic has been generated and the containers are now ready

to begin communicating with one another. For this particular interaction between an

FTP server and client, we want to ensure that it is possible to capture the many ways in

which an FTP session may develop. For instance, the client may seek to download files

via the get command or the put command, alongside many other possibilities. There

are 13 possible capture scenarios intended to encapsulate a wide range of potential

FTP sessions. These include downloading a single file using get or put, downloading

every file using mget or mput, deleting every file from the server and requesting files

from the server without the necessary authentication.

Finally, after the scenario ends, both the User directory and any downloaded files are

then removed from the host machine. Following this, the containers are then stopped

and the bridge network is torn down. All necessary containers, volumes and scripts are
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in the same position prior to initiating the scenario — barring any generated .pcap files

— allowing for the scenarios to be started repeatedly with minimal human interaction.

Figure 3.3: Wireshark view of a .pcap file from our FTP scenario

3.4.5 Complex Example Scenarios - Secure SQL & Insecure SQL

We outline the implementation of two complex scenarios: a benign SQL scenario and

a malicious SQL scenario. The benign scenario simulates the behaviour one would

expect from a secure user registration page whilst the malicious scenario simulates a

SQL injection attack. We include some necessary files and code snippets for the secure

SQL scenario in Appendix A.

Implementation of Secure SQL We discuss the implementation of our secure SQL

scenario before describing how we modified this scenario to allow for SQL injection

attacks. Upon starting our script, three primary containers — a MySQL server, an

Apache server and an ’Admin’ user — are launched alongside their respective tcpdump

containers. For ease of communication, all the containers sit on the same subnetwork

and are given fixed IP addresses.

Our MySQL server is built from the official docker-library/mysql Github repository.

Upon starting our docker-compose file, we expose port 3306 — the default for MySQL

connections —, we replace the preexisting configuration file with our own and we send

the necessary scripts to build our MySQL database. Every time we start this container

we are effectively starting MySQL for the very first time. As such, we wait 60 seconds

until MySQL generates a random password for root access, which we extract from

the container by monitoring its Docker log file. We can then create a database and

table to store our user credentials in. The table has four columns: user id, username,

password and timestamp. We demand that all usernames are unique and that neither

the username nor password can be empty.
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We obtain our Apache Dockerfile from the officially maintained docker-library/PHP

Github repository, modifying the Dockerfile slightly to enable the mysqli package.

On launching this container, we expose port 80 to allow for HTTP connections and

share a volume containing all our webpages. These include a configuration page which

immediately starts a connection to the MySQL server, a registration Page, a login Page

and an index page that a user is redirected to upon successfully logging in. All user

data is handled using prepared statements according the standards set by OWASP [33],

preventing SQL injection attacks.

Finally, our Admin user is an Alpine Linux instance with Python installed. We also

install the requests library to communicate over HTTP. This container waits until the

MySQL server is completely set up before registering users and sending their details

to the login page. The usernames and passwords are drawn from a text file containing

roughly 40000 strings. Although this is only a single scenario, we capture traffic from

successful and unsuccessful logins and registrations, as well as all traffic between the

Apache and MySQL containers.

Implementation of Insecure SQL We modify the above containers to generate ma-

licious traffic. For the MySQL server, instead of creating an empty database and grad-

ually adding entries, we import a previously created user table that had been saved

using the mysqldump command line tool. This is a critical design choice; we could

have used the same technique as our secure SQL scenario to fill the user table but this

is problematic. In particular, we would generate .pcap files with a mix of benign traffic

from the normal registrations and malicious traffic from the injection attack.

For our Apache server, we modify the PHP code for the login page by removing all

prepared statements, making these fields vulnerable to SQL injection. We keep the

registration page identical, as this allows us to generate a traffic from failed attacks.

Finally, we replace our Admin user with an Attacker. This container operates in a

similar manner, however, instead of entering valid usernames to the login fields, the

Attacker enters a series of strings that result in unwanted behaviour. For instance,

entering ’ or 1=1-- returns the entire database.

3.5 Creation of Datasets

In contrast to how many other network traffic datasets were created, it’s unfeasible to

have all of our Docker scenarios running simultaneously over a large period of time.
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This is both due to personal hardware constraints as well as networking limitations

of the Docker framework — such as clashing IP addresses and ports. The data for

our datasets was collected over the course of several weeks before being coalesced

into a main dataset. If done naively, this presents a problem. As discussed by Shiravi

et al. [42], it is unclear whether randomly merging both attack and benign data in

an overlapping manner introduces inconsistencies to the data. Therefore, we created

our dataset by collecting data in 10000 second chunks, where both benign and attack

scenarios are activated via human interaction. All .pcap files collected during a given

chunk can then be merged together in a manner that ensures that the collected traffic is

as consistent as possible — which may not happen if attacks were inserted randomly.

We then stitch together all of these chunks into a single .pcap file using a combination

of Mergecap [38] and Editcap [41]. This allows us to shift the timings of each .pcap

file by a fixed amount such that all of are chunks occur in succession whilst maintaining

the internal consistency of each chunk.

With respect to the problem of labelling, ensuring that each Docker container only

produces network traffic related to a single protocol or process is a fundamental design

choice as it allows us to build a dataset with a perfectly accurate ground truth of appli-

cation flows — that is to say, we can guarantee the process or protocol producing any

packet in our dataset.

In designing our dataset, we largely followed the lead of existing datasets. Namely, the

Bro logs produced in section 3.2.1 gave us a reasonable approximation of the number

of flows of a given protocol and their respective ratios. As previously discussed, HTTP,

SSL, DNS and x509 made up the bulk of these datasets and, as can be seen from table

3.1, there was then consistently a large gap between these and other common protocols.

Unfortunately, some of our data generating scenarios do not produce a fixed number of

flows. As such, maintaining a desired ratio between protocols when constructing our

dataset, although possible, was largely the result of trial and error.
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Chapter 4

Experimentation

4.1 Experimental Design

To evaluate the utility of our Docker framework, we construct a series of experiments.

We had two specific goals in mind when designing our experiments. Firstly, we wanted

to demonstrate that the traffic generated by our Docker scenarios is meaningfully use-

ful for training and testing intrusion detection systems so it must be sufficiently rep-

resentative of real-world traffic. Secondly, we wanted to demonstrate that having a

framework to continually generate data is extremely useful for evaluating the efficacy

of intrusion detection systems.

4.2 Experiment 1: Exploration of Artificial Delays

4.2.1 Motivation

We devote considerable time to demonstrating that it is possible for traffic generated by

our Docker suite to conform to real-world distributions when altered using tc-netem.

To properly classify internet traffic — either into discreet application flows or for the

purposes of intrusion detection — it is necessary to consider a comprehensive range

of features. Of these features, the inter-arrival times (IATs) of packets has been shown

to be particularly relevant [47] [32]. Moreover, packet inter-arrival times are a useful

feature for anomaly detection systems, particularly in the realm of data exfiltration and

DoS detection [23]. For instance, Berk et al. [8] illustrated how attackers can artifi-

cially delay packets to exfiltrate data from a network; such covert channels of com-

munication can be detected via the unusual distribution of packet inter-arrival times.

23
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Arshadi et al. [4] found that certain classes of malware, namely worms and trojans that

initiate their attacks through unusual port connections can be detected through analy-

sis of packet inter-arrival times. Therefore, in order for IDSes trained on our Docker

traffic to be effective, it is vital that the IATs of these packets are realistic.

However, it is not immediately clear if the traffic generated by our suite of Docker

containers satisfies this condition. A considerable percentage of the traffic generated

by our Docker containers is transported over the Docker virtual network and so it does

not succumb to problems associated with normal network congestion, such as packet

loss, corruption and packets arriving out of order. We developed wrapping scripts that

allow us to artificially add such phenomena using tc-netem to our generated traffic,

but, again, it is unclear whether such network emulation actually provides us with data

that could plausibly come from real-world traffic. To determine the realism of these

artificial delays, we conduct the following experiment.

4.2.2 Datasets

We create two classes of datasets — one which is representative of ’real-world’ traffic

and one which has been generated from our Docker scenarios. For simplicity, we only

consider datasets consisting of FTP traffic.

To generate our real-world dataset, we set up a containerised vsftpd server running on

a Google Compute virtual machine located in the Eastern United States and a con-

tainerised ftp client on our local machine. Then, we ran a series of our scripted in-

teractions between the two machines, generating 834 megabytes of data or 250964

packets. These interactions consisted of several FTP commands with various network

footprints — namely, downloading 20 files at random using both the get and put

commands, deleting all files, downloading all files via mget and failing to log in to the

vsftpd server 10 times. We collect all data transmitted on both the server and the client.

We call this data the Google dataset.

We then repeat this process using the same container set-up but across the Docker vir-

tual network on a local machine. We ensure that the files hosted by both vsftpd servers

are different to verify whether our Docker suite can emulate the generalised protocol

behaviour found in the Google dataset, rather than the inter-arrival times that may be

specific to a certain set of files. We repeat this process several times, generating sev-

eral Local datasets under a variety of emulated network conditions, discussed in section

4.2.3. Our Local datasets vary slightly in size, but are all roughly 800 megabytes with
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245000 packets.

4.2.3 Methodology

Figure 4.1: Diagram showing how we generated our Local datasets (L) and our

Google dataset (R)

tc-netem allows for us to introduce packet delays according to a variety of distri-

butions — uniform, normal, Pareto and Paretonormal 1. Initial testing revealed that

a uniform distribution insufficiently modelled real-world traffic delays so we do not

include it in our experimentation. Furthermore, tc-netem adds delays according to

distribution tables and so it is relatively trivial to add our own. Therefore, after extract-

ing the inter-arrival times of our Google dataset, we fit a Weibull distribution to this

data before generating a tc-netem compatible distribution table. In total, we test the

efficacy of four distributions to model inter-arrival times — normal, Pareto, Paretonor-

mal and Weibull.

We generate several Local datasets by delaying our traffic according these distribu-

tions, performing an exhaustive grid search over their means and standard deviations.

For instance, one dataset consisted of our traffic delayed according to a normal distri-

bution with a mean inter-arrival time of 50ms and a jitter of 20ms. Initial experimen-

tation revealed that for all of our generated traffic, introducing delays with a mean in

the range of 40ms to 70ms produced the best results. Thus, we limit our grid search

to this range in 10ms intervals. Setting the jitter of the distribution too high resulted in

the repeated arrival of packets out of order, therefore we further limit our grid search

to jitter values in 5ms intervals up to half of the value of the mean. For instance, for

1This Paretonormal distribution is defined by the random variable Z = 0.25∗X +0.75∗Y , where X
is a random variable drawn from a normal distribution and Y is a random variable drawn from a Pareto
distribution.
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a mean of 40ms, we consider jitter values of 5ms, 10ms, 15ms and 20ms. In total, we

generate 88 Local datasets.

Our goal is to discover the Local dataset whose packet timings most closely resemble

those of our Google dataset. To do this, we extract the IATs and packet sizes from our

datasets on a packet-by-packet basis and store these results in arrays — 250964 x 2 for

our Google Dataset and roughly 245000 x 2 for all of our Local datasets. We measure

the similarity between two of these arrays by training a Random Forest classifier to

distinguish between them. We say that if the Random Forest correctly classifies each

packet with a success rate of only 50% then it is no better than randomly guessing

and, as such, the inter-arrival times of these two arrays are indistinguishable from one

another.

To perform this measurement, we concatenate one Local dataset array with our Google

dataset array, label the entries and then shuffle the rows. We proportion this data into a

training set and a testing set using an 80-20 split. We then feed this training data into

a Random Forest with 1000 trees and fixed seed and then record the accuracy of this

Random Forest on the test set. We repeat this process for every single Local dataset,

88 times in total.

4.3 Experiment 2 - Classifying Application Flows using

IATs

4.3.1 Motivation

Having examined whether our Docker framework is capable of emulating real-world

IATs, we explore their utility in traffic classification in depth.

Classifying traffic based on IATs falls under the category of Stateful Packet Inspec-

tion (SPI), which attempts to segregate flows by examining only the first header and

statistical characteristics of packets. Although SPI considers strictly less information

about packets compared to DPI, this can be advantageous as it doesn’t incur the high

computation overheads of DPI, can classify encrypted traffic and produces fewer pri-

vacy concerns. Efficient traffic classification is essential for IDSes as this facilitates the

detection of protocols running on atypical ports or unusual traffic patterns in real-time,

which may indicate the presence of an intruder.

As network conditions vary considerably, machine-learning techniques for traffic clas-

sification are a fruitful approach with many successful published classifiers. Further-
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more, inter-packet arrival times have been shown to be a discriminative feature [47]

[32]. However, many of these methods classify completed flows and, therefore, con-

sider statistical information about the IATs — such as the mean and variance. However,

on-the-fly classifiers are also successful. Jaber et al. [24] showed that a K-means clas-

sifier can classify flows in real-time solely based on IATs with precision exceeding

90% for most protocols within 18 packets. Similarly, Bernaille et al. [9] demonstrated

that a K-means classifier can precisely classify traffic within five packets using only

packet size as a feature.

These results are promising for an IDS using IATs to classify malicious traffic. How-

ever, Jaber et al. only evaluated their traffic classifier with training and testing data

drawn from the same dataset containing traces of a single network; there is no measure

of how this model may generalise to other networks with differing conditions. Further-

more, they were limited to using unsupervised machine learning algorithms to classify

their traffic as their datasets had no ground truth.

We attempt to replicate these results within our Docker framework with some adjust-

ments. As we can generate a fully accurate ground truth, we attempt to segregate

application flows based on their IATs using supervised learning techniques. Moreover,

we then measure this model’s ability to generalise by testing its efficacy on another

dataset with different network conditions.

4.3.2 Data & Preprocessing

Our goal is to measure a classifier’s ability to generalise across datasets. Therefore we

construct two datasets using our Docker framework, both containing the same number

of network traces from the same containers.

For our first dataset, we generate 3200 .pcap files, each containing traffic from one

of 16 different classes: HTTP (Client & Server), HTTPS (Client & Server), RTMP

(Client, Server & Viewer), SSH (Client & Server), FTP (Client & Server), IRC (Client

& Server), SMTP, SQLi and DoS traffic. To prevent class imbalance, we generate 200

examples for each class. To more accurately emulate potential network conditions,

we use our tc-netem scripts to apply a unique delay to every container involved in a

scenario. These delays follow a Pareto distribution with random mean between 0 and

100 milliseconds and random jitter between 0 and 10 milliseconds. We then preprocess

this data by removing all but the first 12 packets of each .pcap file using Editcap. We

extract the inter-arrival times of each packet and store the results for each class in a 11
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x 200 array before concatenating a column of labels. We subsequently concatenate all

of these 12 x 200 arrays together before shuffling the rows. We call this our Primary

dataset.

We then repeat this process to generate a second dataset, changing the properties of our

emulated network. Again, we delay all traffic using a Pareto distribution, however, this

time we select a random mean in the range of 100 to 500 milliseconds and random jitter

between 0 and 50 milliseconds. The subsequent preprocessing of our data remains

unchanged. We call this our Secondary dataset.

4.3.3 Methodology

First, we attempt to reproduce the results presented by Jaber et al. by training a Ran-

dom Forest with 100 trees to classify application flows based off of packet IATs. We

do this by proportioning our Primary dataset into training and testing sets using an

80-20 split. We then train and test our Random Forest repeatedly, first considering the

classification accuracy based on the IATs of only the first two packets, then the first

three packets and so on, up to 12 packets. We record the resulting confusion matrix for

each round and calculate the precision and recall rates of our classifier.

Having trained our classifier, we measure its ability to generalise by repeating the

above experiment, but replacing the test set with our Secondary dataset. Again, we

record the precision and recall rates.

4.4 Experiment 3 - Varying levels of Malicious Traffic

4.4.1 Motivation

As discussed in section 2.2.2, a consistent problem with existing network traffic

datasets for intrusion detection is the difficulty in establishing the malicious traffic

that the dataset should contain. Pendlebury et al. [36] identify two ways in which

the malicious traffic can be lacking: temporal bias and spacial bias. Temporal bias

refers to the same phenomenon that Allix et al. [2] discuss; the classification accuracy

of machine-learning anomaly detectors disimproves over the course of its deployment

lifecycle as new malware and intrusion techniques begin to emerge. Spacial bias refers

to unsound assumptions about the ratio of malicious traffic to benign traffic in the data.

Many existing datasets in security over-represent the amount of malicious samples

considerably.
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Failing to account for these biases can vastly inflate the supposed performance of

machine-learning based anomaly detectors [37]. For instance, there exists numerous

papers for numerous machine-learning algorithms boasting accuracy rates of 95% or

higher. However, these implementations often lack temporal robustness or, as dis-

cussed by Axelsson [6], fail to account for the base-rate fallacy. This states that, be-

cause there exists a considerable class imbalance in network traffic — that is, benign

traffic vastly outnumbers malicious traffic —, the effectiveness of intrusion detectors

are limited by their false positive rate.

It is difficult to get a reasonable understanding of how spatial bias affects the effi-

cacy of machine-learning-based intrusion detectors using existing datasets because of

the high ratio of benign to malicious traffic. This means that if one wanted to in-

vestigate the effects spacial bias where, say, 50% of the training and testing data is

malicious, it’s necessary to either oversample malicious traffic or undersample benign

traffic. However, these are both problematic; oversampling results in a considerable

amount of duplicated data, which will patently inflate the accuracy of an intrusion de-

tector. To prevent exact duplication, this data could be altered slightly but it’s unclear

whether this manipulated data actually resembles something that can be found in the

real-world. Similarly, undersampling involves discarding a tremendous amount of be-

nign data and, therefore, it is unclear whether one attains an accurate false positive rate

— it is possible that one has discarded entire classes of benign data.

However, generating data using our Docker framework does not suffer from these prob-

lems because, instead of oversampling, one can simply just generate more malicious

traffic. To demonstrate this, we dedicate our second experiment to the exploration of

spacial bias.

4.4.2 Data & Preprocessing

In order to investigate the effects of spacial bias in intrusion detection datasets, we con-

struct two datasets from our Docker framework — one consisting of benign traffic and

one consisting of malicious traffic. To create our benign dataset, we follow the design

principals outlined in section 3.5, resulting in a dataset consisting of roughly 80,000

flows of HTTP, DNS, SSL, FTP, SMTP, NTP and MySQL traffic. This contained 11.2

Gigabytes of traffic captured over the course of 22 hours. For our malicious dataset,

we capture traffic originating from DoS, SQL injection, Url Fuzzing, SSH password

bruteforcing and Heartbleed attacks. Again, this data consists of roughly 80,000 flows.
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In order to more closely resemble real-world traffic, any network traffic originating

from the Docker virtual network was delayed according to a Pareto distribution with

random mean and jitter. We then extracted the flow statistics from these two datasets

using the CICFlowMeter tool [27], which produces a CSV file of 80 different flow

statistics that we use as features to train our machine-learning algorithms. These flow

statistics are then normalised to lie between 0 and 1. We label all benign flows as 0

and all malicious flows as 1.

We use this data to create a further 12 training and test datasets — six of each —

with various levels of spacial bias. In total, we had 6 distinct training and test sets

containing 5%, 10%, 20%, 40%, 60% and 80% malicious traffic. Regardless of the

amount of malicious traffic in the datasets, we ensured that the total number of flows

in each dataset was fixed with our training datasets containing 60,000 flows and our

test datasets containing 20,000 flows.

4.4.3 Methodology

To investigate the effects of spacial bias in intrusion detection datasets, we focus on

two machine-learning algorithms that have reportedly produced excellent results in

this domain: Random Forests and Multi-Layered Perceptrons (MLPs). We consider

a random forest with 1000 trees and an MLP with three layers, each with 80 nodes.

First, we fix the percentage of malicious traffic in the training dataset to 5% and 80%

before training our algorithms and calculating the resultant confusion matrix for all of

our test datasets. We then repeat this process, fixing the percentage of malicious traffic

in the test datasets at 5% and 80% and training our algorithms using all of our training

datasets and calculating the resultant confusion matrices.
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Evaluation & Results

5.1 Evaluation of Docker Scenarios & Dataset

The primary objective of this dissertation was the development of a series of scripted

scenarios to generate both benign and malicious traffic from a variety of Docker con-

tainers. Moreover, we aimed to coalesce that traffic into a dataset for the purposes of

training intrusion detection systems that had comparable qualities to existing datasets.

5.1.1 Docker Scenarios

Over the course of this project, we increase the number of Docker scenarios in the

Detlearsom project by 17 for a total of 26 scenarios. Here, we evaluate our scenarios

against the requirements discussed in section 3.1.

Coverage of Protocol Types We introduced several new protocols and applications

flows to the Detlearsom project, including BIttorrent, DNS, X509, MySQL, NTP,

RTMP and audio streaming. Of the datasets we listed in 3.1, we can use Detlearsom

scenarios to generate datasets containing the protocols that make up at least 87.8% of

Mawi, 98.3% of CIC-IDS 2017, 65.6% of UNSW-NB15 and 94.5% of ISCX Botnet

benign IPv4 flows. Furthermore, we can generate traffic for which there is no equiva-

lent in some of these datasets, such as RTMP or Bittorrent.

Variation within Protocols In total, our scenarios have 40 variations. Examples of

variations include launching 3 different DDoS attacks in our Mirai scenario, download-

ing websites using 4 different user-agents in our wget over WAN scenario and being

able to launch both successful and unsuccessful attacks in our insecure SQL scenario.

31
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Of the scenarios that don’t have explicitly coded variations, we ensure that we gener-

ate traffic with some variety to it, such as our RTMP scenario streaming one of several

different video files.

Inclusion of Malicious Traffic Our malicious scenarios cover a wide range of po-

tential attacks. The majority of these are present in existing datasets, but we have

also implemented many modern attacks that have no equivalent representation in other

datasets, such as cryptojacking and XXE. Furthermore, our attacks span a considerable

breadth of attack classes, including DoS, DDoS, CNC traffic, bruteforcing, web attacks

and data exfiltration, as we aimed for. In total, we developed 11 malicious scenarios,

covering 7 attack classes.

Figure 5.1: Means of IATs & Packet Sizes

for Packets 1-12

Figure 5.2: Means of IATs & Packet Sizes

for Packets 501-512

Deterministic Scenarios To get some measure of how deterministic our scenarios

are, we use our Apache scenario to generate 500 .pcap files containing HTTP traffic.

We apply no delays to the traffic and ensure that no other major processes are run-

ning during the capture so that there is minimal interference with the Docker virtual

network. We then calculate the mean IATs and sizes of packet 1-12, seen in figure

5.1 and packets 501-512, seen in figure 5.2. As we predicted in Section 3.2.4, a sig-

nificant amount of our packets differ only minimally in timing, with size and content

remaining fixed across datasets. Furthermore, we see periods of greater variation in

packet sizes, as expected. This is caused by the non-deterministic nature of the Docker
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Virtual Ethernet and Apache, where the number of data packets following a TCP ACK

can vary. As such, we verify that our scenrios are deterministic up to networking and

computational differences.

Automated Capture Upon running their respective startup scripts, all of our sce-

narios launch the needed containers, proceed with the specified scenario, capture all

traffic and then take down all containers and networks. Moreover, our scenarios are

ephemeral; we can run each scenario repeatedly with no additional configuration.

5.1.2 Dataset
Table 5.1

Name # Varia-

tions

# Files & Size Complete Cap-

ture?

Total Inter-

action?

Labelled?

Wget WAN 6 160 & 20.1GB √ √

Bittorrent 1 12 & 1.2GB √ √

SQL 1 50 & 536.2MB √ √ √

Apache 2 36 & 30MB √ √ √

Nginx 2 36 & 33.8MB √ √ √

FTP 12 68 & 305.6MB √ √ √

SSH 2 40 & 109MB √ √ √

RTMP 1 33 & 573.5MB √ √ √

NTP 1 60 & 142KB √ √

SMTP 2 50 & 49MB √ √

Goldeneye 1 2 & 523MB √ √ √

SSH BF 2 4 & 120MB √ √ √

URL Fuzz 1 6 & 35.2MB √ √ √

SQLi 1 15 & 70MB √ √ √

XXE 2 4 & 12MB √ √ √

Mirai 1 6 & 1.6GB √ √ √

Heartbleed 1 20 & 40MB √ √ √

We combine 574 .pcap files using the methodology outlined in section 3.5 to create a

network intrusion dataset totalling 24.8 Gigabytes. We extract the flow features from

this data using the CICFlowMeter tool [27], creating flow statistics for over 300000

flows. Here, we evaluate this dataset according to the standards we outlined in section

3.3. We provide an overview of this dataset in table 5.1. Note that providing Total
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Interaction is not applicable to some of our scenarios as they do not produce LAN

traffic.

All of the traffic in our dataset has had artificial delays introduced according to a Pareto

distribution with random mean between 0m and 200ms and random jitter between 0ms

and 50ms. As shown in section 5.2, this particular configuration accurately resembles

realistic network conditions and produces data that is largely indistinguishable from

real-world traffic. Thus, we satisfy the Realistic Network and Traffic requirement.

Furthermore, we include 6 different attack types, satisfying the Diverse Intrusion Sce-

narios requirement.

5.1.2.1 Difficulties & Limitations

A great deal of the challenge of developing these scenarios came from the restrictions

of the Docker framework. In particular, this meant that in order to get each container

in a functioning state, a tremendous amount of configuration was necessary. Although

many services that are commonly used in conjunction with Docker are maintained by

official developers, many of the more obscure applications used in this project do not,

leading to a spate of errors. Furthermore, these problems were often unique to that

particular service being used in Docker and therefore documentation was non-existent.

These problems were compounded further by the atypical manner in which we were

using containers to communicate with one another.

As an example, many issues arouse when developing the bittorrent scenario using the

linuxserver/transmission image. Although this image is both popular and maintained

by a dedicated community, our usage differed significantly enough to cause several

bugs. Usually, the linuxserver/transmission image acts as a server to provide a web

GUI for viewing the status of torrents residing on the host machine. In contrast, we

wanted the process of creating, downloading and seeding torrents to be contained en-

tirely within the Docker container with no usage of the web GUI. However, this results

in an immediate problem when creating torrent files. Each torrent file should contain

information pertaining to the location of the information that’s to be shared; however,

when the torrent file is created in a Docker container and then pushed to the trans-

mission server, transmission fails to recognise that the location specified in the file is

accessible from the Docker container. As such, transmission attempts to download the

file instead of seeding it, despite having full ownership over it already. Unfortunately,

this problem seems to be universal across any implementation for creating torrent files

from the command line usuable in Docker. In attempting to fix this issue, we tried
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using mktorrent, buildtorrent, ctorrent and py3createtorrent, each of which

necessitated rebuilding most of the images of the scenario, but none worked. Finally,

in order to get it working, we decided to relax our design criteria for this particular

scenario, requiring that transmission must also be installed on the host machine. This

allows for torrents to be created on the host machine before transmitting them to the

Docker container, which resolves the issue.

5.2 Results of Experiment 1
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Figure 5.3: Results of Random Forest Classifier for a given distribution at the best

performing delay - Note that a score of .5 represents ’perfect’ indistinguishability

DISTRIBUTION MEAN JITTER RF ACCURACY

NO DELAYS (BASELINE) 0 0MS 0.8176

CONSTANT DELAY 40MS 0MS 0.6730

NORMAL 60MS 5MS 0.6028

PARETO 60MS 10MS 0.5979

PARETONORMAL 50MS 10MS 0.6015

WEIBULL 60MS 10MS 0.5540

Table 5.2: Worst Random Forest accuracy rates for a given distribution

Table 5.2 summarises the values of the mean and jitter for a given distribution that

produced the worst results from the random forest classifier.
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In order to establish a baseline, we first compare the traffic generated from our Docker

scenario to that of the Google Compute data with no added delays. In this case, our

Random Forest was largely able to distinguish between the two datasets, achieving

an accuracy of over 80%. As can be seen, the classification accuracy is worsened

considerably by introducing a constant delay to the packets, ensuring that the mean IAT

of the two datasets are roughly similar. This was then further worsened by introducing

network delays according to all of our tested distributions.

Although the best performing results of the Normal, Pareto and Paretonormal distribu-

tions are largely similar, we note that, as can be seen in figure 5.3 that increasing the

jitter steadily improved the performance of the random forest classifier. In contrast,

the Pareto and Weibull distributions maintain low-levels of accuracy as jitter increases

— barring the highest values of jitter, due to the effect discussed in Section 4.2.3. This

seems to be due to the fact that both the normal and Paretonormal distributions fail to

fall off quickly enough to model the IATs of our Google dataset.

5.3 Results of Experiment 2

Figure 5.4: Precision & Recall for Primary

Dataset

Figure 5.5: Precision & Recall for

Secondary Dataset

After each run of our Random Forest on our Primary dataset, we gather the True Posi-

tive (TP), False Positive (FP) and False Negative (FN) rate for each class. We then cal-

culate their precision — defined as TP
TP+FP

— and recall — defined as TP
TP+FN

— values.

in figure 5.4, we see that our average precision and recall across the classes exceed 0.9

after 10 IATs. However, our classifier had some difficulty distinguishing between cer-

tain, interrelated classes: in particular, we achieve a maximum precision and accuracy

of only 0.5714 and 0.625 respectively on our RTMP-streamer class. This is because

many of these features were incorrectly labelled as being from the RTMP-server class.
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This is the only server-client pair that suffered from this inaccuracy. Furthermore, after

12 packets our DoS and SQLi data is classified with precision and recall rates of 1.0

and 1.0 and 0.9462 and 0.9322 respectively.

This does not hold when we test our Random Forest on our Secondary dataset. As

seen in figure 5.5, we see a substantial decrease in our average precision and recall

rates, achieving a maximum of 0.5923 and 0.5676 respectively. Moreover, after four

packets, increasing the number of IATs in our dataset provides little additional benefit.

Although some services generalised well, such as IRC-client and IRC-server, others

failed to be classified, with every single SMTP feature being classified as HTTP-client.

We also see a substantial drop-off in the classification of malicious traffic, with the

precision rates of DoS and SQLi data not exceeding 0.6.

5.4 Results of Experiment 3

(a) RF: Trained @ 5% malicious traffic (b) MLP: Trained @ 5% malicious traffic

(c) RF: Trained @ 80% malicious traffic (d) MLP: Trained @ 80% malicious traffic

Figure 5.6: Spacial Bias in Training Set

Having trained our algorithms several times, we gather the number of True Positives

(TP), True Negatives (TN), False Positives (FP) and False Negatives (FN). We then cal-

culate the recall, precision and F1-score for both the benign and malicious traffic. We
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(a) RF: Tested @ 5% malicious traffic (b) MLP: Tested @ 5% malicious traffic

(c) RF: Tested @ 80% malicious traffic (d) MLP: Tested @ 80% malicious traffic

Figure 5.7: Spacial Bias in Test Set

produce two sets of graphs from our results, figure 5.6 and figure 5.7, demonstrating

the effects of spacial bias in the testing and training datasets respectively.

To begin, consider the results for malicious traffic in figure 5.6. We note that the

anomaly precision (Pmt) steadily increases as the percentage of malicious traffic in the

test set increases. In contrast, anomaly recall (Rmt) remains steady. This is due to the

decreasing amount of benign traffic in the dataset and, therefore, the effect is most

sharply pronounced when there is a large amount of malicious traffic in the training

set. Note that the F1-score is a function of Pmt and Rmt — F1 = 2 ∗ Pmt∗Rmt
Pmt+Rmt

— and

therefore increases with precision. In contrast, there is a inverse relationship with the

precision of the benign traffic classification — where Pbt =
TN

TN+FN
. This is because our

false negatives increase whilst our true negatives decrease as we increase the amount

of malicious traffic in the test set. Similarly, consider the effects of spacial bias on

the training dataset in figure 5.7. Although slight, we see increasing the amount of

malicious traffic during training causes Rmt to increase as Pmt degrades. This is caused

by the number of false negatives increasing whilst the number of true positives remains

sturdy. Again, as with testing bias, there is an inverse relationship with the recall rates

of benign traffic, whilst precision increases or remains steady.
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Conclusions

6.1 Discussion of Experiments

Experiment 1 We designed this experiment with the aim of demonstrating that our

Docker framework can produce traffic that is sufficiently similar to that found in the

real-world. From the results, we conclude two things. Firstly, we confirm that, for this

particular experiment, the research discussed in section 2.2.3 holds and that both the

Pareto distribution and the Weibull distribution most accurately model real-world IATs.

Secondly, we demonstrate that by introducing artificial network delays to our docker

virtual network, it is possible to reasonably approximate the IATs of real-world traffic,

with our Random Forest mistakenly classifying 40% of our Docker traffic when de-

layed according to a Pareto distribution and 45% when delayed according to a Weibull

distribution. We stress the importance of this result; if our Random Forest could more

easily distinguish between our classes, then the utility of our framework is questionable

as we could not produce realistic traffic.

Experiment 2 When our Random Forest classifier is tested on traffic produced with

the same network conditions as the training set, we reproduce the results of Jaber et

al.[24]. We similarly find that our average precision and recall values quickly rise to

above .75 within 5 IATs before levelling off and achieving values exceeding 0.9 by 11

IATs. However, we see that this Random Forest does not generalise well when tested

on traffic with different network conditions. We see a substantial loss in the average

precision and recall rate, achieving maximal values of 0.5923 and 0.5676 respectively.

This experiment highlights a major difficulty in training traffic classification systems; it

is vitally important that network intrusion datasets contain traffic from a wide variety of

39
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network conditions. This is concerning for intrusion detection, as our Random Forest

failed to classify DoS and SQLi data with meaningful accuracy.

Experiment 3 We reproduce the results found by Pendlebury et al. [37], verifying

that spacial bias in either the training or testing sets causes an inverse relationship be-

tween the precision and recall rates of benign traffic and malicious traffic. We feel this

experiment particularly exemplifies the advantages of our Docker framework; since we

can repeatedly generate datasets with arbitrary ratios of benign to malicious traffic, we

don’t have to upsample or downsample either class to simulate spacial bias, both of

which can lead to inaccurate assessments of a classifier’s precision and recall rates.

6.2 Conclusion, Criticism & Future Work

In order to protect both networks and users from harm, the development of IDSes is

of vital importance. However, presently, the lack of quality, expandable datasets with

accurate ground truths limits the value of machine-learning-based anomaly detection.

The primary goal of this project was the creation of a Docker framework capable of

generating worthwhile network intrusion datasets that satisfy these conditions. To do

so, we designed and implemented 17 containerised scenarios capable of producing

benign and malicious network traces, coalescing this traffic into a dataset. We also

demonstrated that it is possible to introduce artificial delays to the Docker virtual net-

work such that it meaningfully resembles a wide-area network. Following this, to ex-

hibit the advantages of our data generation framework, we performed two experiments

that would be difficult to accomplish using standard, static datasets.

We generated a large network intrusion dataset but we don’t perform any testing or ex-

perimentation with it. Ultimately, it proved too difficult to implement our framework,

generate large amounts of data and design a novel intrusion detection system all within

the time frame of the dissertation. Instead, this dataset serves as an example of what is

possible using our Docker scenarios.

As our Docker framework is designed to be expandable, there are many avenues for

future work. One possibility would be to simply continue developing Docker scenarios

to include greater protocol variety and attack diversity. Alternatively, the scenarios

could be expanded to include IPv6 traffic. The functionality of the scenarios could

also be expanded to capture log data as well as network traffic, providing an additional

source of features for IDS training [1].
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Appendix A

Secure SQL Code

A.1 Docker-Compose.yml

1 version: '2'

2

3 services:

4 sql:

5 image: 'mysql/mysql-server'

6 container_name: mysql

7 ports:

8 - '3306'

9 volumes:

10 - $PWD/sql-share:/home/share/

11 - $PWD/sql_settings/my.cnf:/etc/my.cnf

12 networks:

13 capture:

14 ipv4_address: 172.16.238.22

15

16 apache:

17 image: 'detlearsom/php'

18 volumes:

19 - '$PWD/config:/var/www/html'

20 ports:

21 - "80:80"

22 networks:

46
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23 capture:

24 ipv4_address: 172.16.238.20

25

26 admin_user:

27 image: 'python-requests'

28 command: python /usr/share/scripts/populate_userlist.py

29 volumes:

30 - '$PWD/admin-share:/usr/share/scripts'

31 networks:

32 - capture

33

34 tcpdump_apache:

35 image: 'detlearsom/tcpdump'

36 command: not(ip6 or arp or (udp and

37 (src port 5353 or src port 57621))) -v -w

38 "/data/dump-150-apache-${CAPTURETIME}-$REPNUM.pcap"

39 volumes:

40 - '$PWD/data:/data'

41 network_mode: "service:apache"

42 depends_on:

43 - dummy

44

45 tcpdump_admin:

46 image: 'detlearsom/tcpdump'

47 command: not(ip6 or arp or (udp and

48 (src port 5353 or src port 57621))) -v -w

49 "/data/dump-150-admin-${CAPTURETIME}-$REPNUM.pcap"

50 volumes:

51 - '$PWD/data:/data'

52 network_mode: "service:admin_user"

53 depends_on:

54 - dummy

55

56 tcpdump_sql:

57 image: 'detlearsom/tcpdump'
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58 command: not(ip6 or arp or (udp and

59 (src port 5353 or src port 57621))) -v -w

60 "/data/dump-150-sql-${CAPTURETIME}-$REPNUM.pcap"

61 volumes:

62 - '$PWD/data:/data'

63 network_mode: "service:sql"

64 depends_on:

65 - dummy

66

67 dummy:

68 image: 'alpine'

69 networks:

70 - capture

71 depends_on:

72 - sql

73 - apache

74 - admin_user

75

76

77 networks:

78 capture:

79 driver: "bridge"

80 ipam:

81 driver: default

82 config:

83 - subnet: 172.16.238.0/24

84 gateway: 172.16.238.1

A.2 Start-Up Script

# ! / b i n / bash

export DURATION=” $1 ”

export CAPTURETIME= ` d a t e +%Y−%m−%d %H−%M−%S `
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REPEAT=” $2 ”

[ −z ”$DURATION” ] && DURATION=60

[ −z ”$REPEAT” ] && REPEAT=1

f u n c t i o n a d d d e l a y s {
echo ” Adding d e l a y s t o t h e ne twork . . . ”

DELAY1=$ ( (RANDOM % 100 + 1 ) )

DELAY2=$ ( (RANDOM % 100 + 1 ) )

DELAY3=$ ( (RANDOM % 100 + 1 ) )

# Our tc−netem s c r i p t s t h a t add d e l a y s t o ne twork .

. / c o n t a i n e r t c . sh mysql $DELAY1

. / c o n t a i n e r t c . sh c a p t u r e −140− s e c u r e s q l a p a c h e 1 $DELAY2

. / c o n t a i n e r t c . sh c a p t u r e −140− s e c u r e s q l a d m i n u s e r 1 $DELAY3

}

trap '{ echo ” I n t e r r u p t e d . ” ; t ea rdown ; e x i t 1 ; } ' INT

f o r ( ( i =1 ; i<=REPEAT ; i ++) )

do
echo ” Repea t Nr ” $ i

export REPNUM= $ i

docker−compose up −d

a d d d e l a y s ;

s l e e p 60

PREFIX=” [ E n t r y p o i n t ] GENERATED ROOT PASSWORD: ”

FULL PASS=$ ( do ck e r l o g s mysql 2>&1 | g rep GENERATED)

FULL PASS=${FULL PASS#”$PREFIX”}
echo ”$FULL PASS”

d oc ke r exec − i t mysql / home / s h a r e / s q l s c r i p t . sh $FULL PASS
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echo ” C a p t u r i n g d a t a now f o r $DURATION s e c o n d s . . . . ”

s l e e p $DURATION

docker−compose down

done

A.3 Login Page with Prepared Statements - Code Snip-

pet

/ / Code t a k e n / m o d i f i e d from h t t p s : / / www. t u t o r i a l r e p u b l i c .

com / php− t u t o r i a l / php−mysql−l o g i n−s y s t e m . php

$ s q l = ”SELECT id , username , password FROM u s e r s WHERE

username = ? ” ;

/ / Prepare S t a t e m e n t

i f ( $ s t m t = m y s q l i p r e p a r e ( $ l i n k , $ s q l ) ) {
/ / Bind V a r i a b l e s t o S t a t e m e n t

m y s q l i s t m t b i n d p a r a m ( $s tmt , ” s ” , $param username ) ;

$param username = $username ;

/ / E x e c u t e t h e p r e p a r e d s t a t e m e n t

i f ( m y s q l i s t m t e x e c u t e ( $ s t m t ) ) {
m y s q l i s t m t s t o r e r e s u l t ( $ s t m t ) ;

/ / Check i f username e x i s t s

i f ( m y s q l i s t m t n u m r o w s ( $ s t m t ) == 1) {
/ / Bind r e s u l t v a r i a b l e s

m y s q l i s t m t b i n d r e s u l t ( $s tmt , $id , $username

, $ h a s h e d p a s s w o r d ) ;

i f ( m y s q l i s t m t f e t c h ( $ s t m t ) ) {
\\ V e r i f y password

i f ( p a s s w o r d v e r i f y ( $password ,

$ h a s h e d p a s s w o r d ) ) {
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/ / S t a r t new s e s s i o n

s e s s i o n s t a r t ( ) ;

/ / S e s s i o n v a r i a b l e s

$ SESSION [ ” l o g g e d i n ” ] = t rue ;

$ SESSION [ ” i d ” ] = $ i d ;

$ SESSION [ ” username ” ] = $username ;

A.4 SQL Start-Up Script

# ! / b i n / bash

PASS=$1

mysql −−connec t−e x p i r e d−password −u r o o t −p ”$PASS” <<

END SCRIPT

ALTER USER ' r o o t '@' l o c a l h o s t ' IDENTIFIED WITH

m y s q l n a t i v e p a s s w o r d BY ' password ' ;

\q

END SCRIPT

mysql −−connec t−e x p i r e d−password −u r o o t −ppassword <<

END SCRIPT

CREATE DATABASE dbname ;

CREATE USER ' admin '@'% ' IDENTIFIED BY ' password ' ;

ALTER USER ' admin '@'% ' IDENTIFIED BY ' password ' ;

GRANT ALL PRIVILEGES ON dbname . * TO ' admin '@' % ' ;

FLUSH PRIVILEGES ;

USE dbname ;

CREATE TABLE u s e r s (

i d INT NOT NULL PRIMARY KEY AUTO INCREMENT,
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username VARCHAR( 5 0 ) NOT NULL UNIQUE,

password VARCHAR( 2 5 5 ) NOT NULL,

c r e a t e d a t DATETIME DEFAULT CURRENT TIMESTAMP

) ;

END SCRIPT
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