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Abstract
Mobile applications, or apps, are quickly becoming ubiquitous. The spread of ma-

licious software is also on the rise, particularly in Android apps. Various malware

analysis tools exist to cope with the rising numbers, however their efficiency and ro-

bustness are lacking. Therefore, there still exists a dire need for research in the field

of mobile security. In this project, we attempt to address this problem with the help

of formal methods of verification. We implement a functional language to represent

the behaviour of Android apps, which is useful for malware analysis, to check against

security-related properties.
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Chapter 1

Introduction

With mobile phones and tablets becoming more prevalent, there is also a simultaneous

rise in the number of mobile applications (more commonly known as apps), which

provide a wide range of functional capabilities. Android and iOS being the most widely

used mobile operating systems (in that order), their respective app markets – Google

Play and Apple’s App Store – have both garnered more than 2 million apps since

their launch. As of March 2017, Google Play has on offer 2.8 millions apps to be

downloaded and Apple’s App Store, 2.2 million. [33]

Although the abundance and ease of availability of apps is said to have benefitted its

users, there is a downside in terms of app security, or rather, the lack thereof. This

is due to apps becoming an increasingly popular medium for attackers to inflict with

various forms of malicious software (in short, malware), which have the potential to

cause grave damage. [24, 39] As presented in [44], Intel Security detected malware

from over 190 countries and found more than 6000 instances per hour in some cases.

Android is the mobile operating system most targeted with malware, due to its popu-

larity and open source structure, as shown in [34]. To cope with the rising numbers,

various anti-malware tools are available on Google Play. Consequently, the goal of

these tools is to efficiently detect malicious apps, with the help of automated (or semi-

automated) program analysis techniques. However, their robustness and accuracy is

questionable.

As shown in a study of ten prevalent anti-malware tools for Android in [41], even com-

mon obfuscation techniques – the purpose of which is to avoid detection by employing

obscurity – in malware could not be handled by these tools.
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Chapter 1. Introduction 2

Along with the rapid increase in numbers, the complexity of mobile malware is also on

the rise. The results presented in [40] demonstrate the various challenges that malware

analysis techniques face, while tackling current malware1, and why further research is

needed in this area.

The complexity of mobile malware results from its intricate structure; involving com-

ponents that interact with each other in complicated ways. [40] Therefore, it is imper-

ative to identify the malicious components through models that accurately depict their

behaviour. These models are generally constructed manually in state-of-the-art static

analysis tools [1, 47], and are therefore rigid due to it being hard-wired in code. [13]

Resultantly, malicious apps can evade detection through different execution paths that

are not covered by these models. The research proposed in [13], and this project, seek

to address these points, which we will briefly discuss in the next section.

1.1 Objective

This project is constituent of a broader work in progress [13], which aims to construct

a resilient security analysis framework for mobile apps, specifically for Android apps.

The goal is to enable complex features – such as callbacks, inter-component commu-

nication, and lifecycle – to be modelled, while allowing flexibility for making changes.

A specification language is to be designed, to formalise these platform features. As an

end product, an automated lightweight tool is proposed for checking simple security-

related properties, such as, whether an application has access to your SMS messages

in the background and can send arbitrary messages or not.

First off, mobile apps and their assembly code are reduced to light assembly code. The

focus of this project is to simplify the light assembly code into functional expressions,

while retaining their semantics. The formalisation of the platform features, via a spec-

ification language, is followed by their conversion into functional expressions as well.

Although, in this project, we will focus on the functional expressions resulting from

the app only. Both of these representations can then be verified against security prop-

erties that we want to check, e.g. to deny unwanted behavioural patterns. Figure 1.1

provides a brief look at the procedure, highlighting in colour the steps that we aim to

cover in this project.
1In our project, malware and apps will specifically refer to Android malware and Android apps,

respectively.
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Figure 1.1: Illustration of the analysis procedure presented in [13].

Therefore, in this project, our objective is to extract functions from the light assembly

code that we receive as input. The corresponding implementation is based on the

formal design of a simple functional language. We also delve into the previous steps

of the analysis, to better understand our input, and to make modifications.

Additionally, we attempt to demonstrate the retention of semantics between transla-

tions, by comparing their respective translated programs. With the help of evaluators,

and test cases, we aim to show the correspondence in their evaluation, i.e. the results

they compute.

1.2 Outline

We started with the motivation and objective of this work, followed by an overview

of related work. The next chapter presents the preliminaries reviewed to carry out the

project. This is followed by the formal design chapters, 3 and 4, and their implemen-

tation details in Chapter 5. After that, we present details on the evaluators and the

evaluation results, followed by a general discussion and reflection. We end by briefly

examining future work concepts.
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1.3 Related Work

Static analysis techniques of malware analysis have shown to be powerful, as they ex-

plore all possible execution paths of a program. This helps in addressing the questions

of what data has been leaked, or what private information has been stolen. [40]

We also explore the benefits of formalisation of programs. In [38], a programming

logic for bytecode programs has been developed, which aims to optimise the running

speeds of Java programs. Some of the checks that are necessary at run-time can be

formally verified prior to running the program, thereby reducing delays.

With the help of the theorem-prover, Isabelle/HOL, major parts of the Java Virtual Ma-

chine have been formalised in [37]. This formalisation helps to avoid inconsistencies

and ambiguity that are present in informal specifications.

Function extraction:

We see a brief introduction to function extraction, in the context of software testing,

in [36]. The paper points out that even the most exhaustive form of software testing,

along with thorough inspections, cannot capture the complete functionality of a pro-

gram. In addition to that, the process of software testing can be rather expensive in

terms of cost, time and effort. Therefore, what is needed is an all-encompassing view

of what the software does.

Function extraction applies mathematical foundations for the automation of represent-

ing software behaviour, up to the possible maximum. It is seen to be much faster and

accurate as compared to manual testing. Therefore, making use of function extraction

to formulate a program’s behaviour with utmost mathematical precision is seen to be

promising. [46]

The primary objective of software testing mainly pertains to its functionality. How-

ever, if automated tools were to accomplish that meticulously, more attention can be

diverted to issues such as security testing, reliability, as well as performance. [36]

Function extraction also aids in detecting malware in programs, as seen in [29], the

focus of which is on understanding malware behaviour, attacker methods and also its

countermeasures.

[32] employs function extraction in the domain of low-level imperative programming

languages. It makes use of Hoare Logic [23] for machine code behaviour abstraction,
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which is used for further program verification and for implementing reliable compila-

tion. They have implemented this method for function extraction in HOL4 and also

applied it to ARM, x86 and PowerPC machine code.

Type systems used for verification:

Type theory is seen to be a useful specification language, especially for the proof of

purely functional programs. In [21], type theory is used to study the certification of pro-

grams that have both functional and imperative components. The paper describes the

formal method of providing software correctness as consisting of three steps, namely,

the specification; a method to generate proof obligations; and a framework to establish

their identity.

The paper also uses the concept of typing with effects, which is inspired by the work

presented in [45]. The work mentioned has been implemented in the Coq proof as-

sistant. It takes an annotated program as its argument and generates a set of proof

obligations. Their definition of annotated type consists of the usual notion of type, an

effect and a specification as a pre- and a post-condition.

[22] presents type-based enforcement of secure programming guidelines, particularly

for code injection prevention at SAP, which is similar to what we want to achieve but

in the context of Android apps.

Learning unwanted behaviours:

In [16, 15, 14, 17], we see the notion of unwanted behaviours in apps, found in mal-

ware samples, such as sending a text message to premium numbers without the user’s

knowledge. These unwanted behaviours can be isolated through malware classifiers.

To improve the robustness of the classifiers, the unwanted behaviours can be abstracted

as automata in order to help in learning and verifying them. It has also been shown

that semantics improves robustness of such classifiers.



Chapter 2

Preliminaries

2.1 Theoretical Background

A theoretical overview is presented for the reader to appreciate the underlying theoret-

ical concepts employed in this project, especially for those unacquainted with the field

of formal languages and verification. It has been assumed that the reader has a basic

understanding of automata theory and its languages, therefore a primer on that topic

has been omitted. All examples and definitions used in the following two sub-sections

are taken or inspired from [35], unless otherwise stated.

We start with the basics of type theory, which forms the basis of verification of our

functional representation, followed by a primer on lambda calculus, which we use for

the translation.

2.1.1 Type Systems

A wide spectrum of formal methods are commonly used in the field of software engi-

neering, to make sure that a system abides by its specifications by behaving correctly.

From a range of powerful frameworks to lightweight formal methods, type systems

from the latter category have emerged as the most preferred and extensively used.

Type systems or type theory generally refers to a more expansive area of study in

logic, mathematics and philosophy, but for our purposes they shall pertain to reasoning

about programs.

6
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Properties of a type system:

“A type system is a tractable syntactic method for proving the absence of certain pro-

gram behaviours by classifying phrases according to the kinds of values they compute.”

Type systems are static, in the context of statically typed programming languages. As

a result, they are also conservative: they cannot prove the presence of bad behaviours

but can only prove their absence, in contrast to dynamic or latent checking. In essence,

a type and effect system is used to analyse programs, which depends on a specified

policy as input [22].

A program is well-typed if its behaviour corresponds to the one described by the type

system. Otherwise, the program is ill-typed and is rejected, when the type system no

longer recognises its behaviour. However, that may also be due to the type system

not being expressive enough; it fails to capture the behaviour of a program that does

actually fit the given specification. Expressiveness and conservativity are thus relevant

aspects of research in this field. Another considerable detail is that a type system

can provide guarantees that a well-typed program is free from only certain unwanted

features. It does not ensure prohibiting any arbitrary undesired behaviour.

In order to ensure the safety or soundness of well-typed programs, also known as type

safety, the progress and preservation theorems are introduced. It must be guaranteed

that a program does not malfunction or get stuck1. The progress theorem stipulates that

a well-typed term does not get stuck; either it is in the final state and has an acceptable

value or it can move to another state in accordance with the evaluation rules2. The

preservation theorem states that a consequent term, reached after an evaluation step of

a well-typed term, is also well-typed.

To speculate about the behaviour of a program, its syntax and semantics are formalised

with the help of a language (metalanguage). An example is given below: -

Syntax:

t::= terms :

true constant true

| false constant false

1That is to say that it does not get stuck at a state that is undefined by the type system; where the
evaluation rules are inapplicable and the value reached is not final. This is better illustrated in the next
subsection.

2Introduced in the next subsection.
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| if t then t else t conditional

v::= values :

true true value

| false false value

t is a placeholder for the terms, such as true and false, that are declared below it. t ::=

represents the declaration. This implies that when t is encountered, it can be replaced

by any of the specified terms. Below it are values, which are possible final outcomes

of the system, reduced to its simplest form.

Semantics:

After the syntax of the language has been formalised, its semantics must also be con-

sidered. There are three main styles to formalise the semantics of a language, which

determines how values are evaluated; namely operational, denotational and axiomatic

semantics. In our project, we will principally adopt operational semantics.

Operational semantics makes use of an abstract machine to represent the behaviour of a

program. It is abstract because it does not use a low-level instruction set as its machine

code. Instead, it makes use of the language terms as its mode of representation.

More specifically, terms of the language are used to depict the machine’s state, and

transition functions determine its behaviour. Depending on the current state, a transi-

tion function either defines the next step that must be taken by simplifying a term or

shows that the machine has reached its final step. To be more precise, this refers to the

small-step style of operational semantics, also known as structural semantics, which

we illustrate with an example next.

Evaluation:

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t′1
if t1 then t2 else t3

(E-IF)

−→ if t′1 then t2 else t3

An evaluation relation/reduction is given in the form of t→ t’, which means that in

one step, t evaluates to t’. Three inference or evaluation rules are given to define this
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relation. More specifically, when the machine is in state t, it can move to the next state

t’ in one computational step.

if true then true else false

I true

This is a sample program in the given language. Here, the first (E-IFTRUE) rule is

applied and the state of the machine moves to true, which is a value and therefore is

the final result of evaluation.

The preceding paragraphs have been taken and modified from [43].

Types:

In order to ensure type safety, we’d like to guarantee that a term does not get stuck,

without evaluating it. For example, we want to ensure that indeed the guard of a

conditional is a boolean value and not a numerical value. The language given above is

untyped; it does not have types assigned to its terms. We shall now add types to it, in

order to ensure type safety.

The typing relation is written as t:T and is defined by a set of inference rules assigning

terms their types. The typing rules for this typed language are given below. The rules,

T-True and T-False, assign the type Bool to the boolean constants, true and false.

T::= types :

Bool type of booleans

true : Bool (T-TRUE)

false : Bool (T-FALSE)

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

(T-IF)

2.1.2 Lambda Calculus

It has been found that a complicated programming language can be studied by trans-

forming its fundamental structure into a smaller core language or calculus. This can be

accomplished with the help of derived forms, which can be understood by evaluating

them to the core. [26, 28, 27] A formal system known as the lambda calculus [19, 20] is
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a core language used, in which all operations are reduced to a series of merely function

definition and application.

Subsequently, lambda calculus has been applied in various fields, such as language

design, programming language specifications, and in the study of type systems. Its

significance emerges from the fact that it is both a simple language to write in, as well

as a language that can be reasoned about mathematically and proved rigorously. The

concepts and techniques described for lambda calculus are transferable to other core

calculi that are akin to it, such as pi-calculus [31, 42] and object calculus [30].

Every programming language seeks to abstract its procedures (or functions) by avoid-

ing repetitiveness. Rather than doing the same calculation repeatedly, we can create a

function that accomplishes the same, but in a generalised manner by taking a parameter

(or parameters). This will be made clearer by the example below.

Consider the following calculation:

(6*5*4*3*2*1) * (5*4*3*2*1) + (4*3*2*1) - (3*2*1),

which can be rewritten as:

fact(6) * fact(5) + fact(4) - fact(3)

where:

fact(n) = if n=0 then 1 else n * fact(n-1).

For every positive number n, the function fact, with its parameter n, calculates the

factorial of n and returns it as a result. Suppose we write "λn" to signify "a function

that, for each n, yields...", then the function definition of fact can be rephrased as:

fact = λn. if n=0 then 1 else n * fact(n-1)

Then, fact(0) would mean the function (λn. if n = 0 then 1 else...) ap-

plied to the argument 0. The result is the value computed by substituting every n in

the function body with 0 (if 0=0 then 1 else...), which is 1. Lambda calculus

demonstrates this form of function definition and application in the "purest possible

form". Everything is a function in lambda calculus, including the arguments given to

the functions as well as the results returned by them.
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Syntax:

The syntax of lambda calculus consists of three types of terms3: a variable, an abstrac-

tion of a variable from a term, and the application of a term to another term. These can

be captured in the following grammar:

t::= terms :

x variable

λx.t abstraction

t t application

v::= values :

λx.t abstraction value

However, a slight ambiguity must be pointed out. The syntax of a programming lan-

guage can refer to either its concrete syntax or its abstract syntax. Concrete (or surface)

syntax is the one encountered directly: the character sequences that are written and

read. Abstract syntax refers to the representation of the program as labeled trees called

abstract syntax trees (ASTs). The simple structure of ASTs make it easier to perform

complex operations and to conduct proofs about them, and are especially relevant for

the workings of compilers and interpreters.

Figure 2.1: The abstract syntax tree for s t u and (s t) u.

Typically, when viewing the grammar of the terms presented above, the abstract syntax

is the one referred to. Even if concrete terms are used in a linear fashion in examples,

3Terms specifically refer to lambda-terms in our context; hence t represents lambda-terms too.
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their tree structures are kept in mind. Additionally, two conventions are adopted while

writing linearly. The first is that application associates to the left, such that s t u

and (s t) u have the same AST, as shown in Figure 2.1. Secondly, abstractions are

extended to the right as much as possible, such that λx. λy. x y x and λx.( λy.

((x y) x)) have the same tree, as seen in Figure 2.2.

Figure 2.2: The abstract syntax tree for λx. λy. x y x and λx.( λy. ((x y) x)).

Another detail regarding the syntax of the lambda-calculus is the scope of its variables.

If a variable x appears in the body t of an abstraction λx.t, then its occurrence is said

to be bound. More specifically, λx is the binder, the scope of which is t; x is bound by

this abstraction. Otherwise an occurrence of a variable not bound by an abstraction is

said to be free. Examples of free and bound occurrences are given below:

• Bound – the occurrences of x in λx.x, λx.λy.x y, and the first occurrence of

x in (λx.x)x.

• Free variables – the occurrences of x in x y, λy.x y, and the second occur-

rence of x in (λx.x)x.

Evaluation:

The basic form of the lambda calculus consists of abstraction and application only.

Therefore, the way to compute values is through applying arguments to functions,

where arguments themselves are functions. The left-hand side of an abstraction is

replaced by the argument, in the right side or the body of the abstraction.

(λx.t1) t2 −→ [x 7→ t2] t1
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The occurrences of the variable x are replaced by t2 in t1, and [x 7→ t2] t1 denotes

the substitution. A term in the form of (λx.t1) t2 is known as a reducible expression,

or redex, in short, and the operation is known as reduction.

Different strategies exist for the reduction of terms, but we will stick to the call-by-

value strategy as it is the most widely used, and allows for easy addition of features. In

this strategy, only the outermost or the left-hand side redexes are reduced, and is only

done so when the right-hand side is reduced to a value. Therefore, if t2 is not a value,

(λx.t1) t2 is not reduced, and remains as it is.

That is why values consist of arbitrary lambda-terms in our syntax, as call-by-value

evaluation stops on encountering a lambda. The small-step operational semantics for

the lambda terms we have described is as follows.

t1 −→ t′1
t1 t2 −→ t1’ t2

(E-APP1)

t2 −→ t′2
v1 t2 −→ v1’ t2

(E-APP1)

(λx.t1) v2 −→ [x 7→ v2] t1 (E-APPABS)

2.2 Technical Background

Without delving too much into the minutiae, a brief technical overview is presented

to give the reader an insight into the workings of Android apps and how they will be

analysed. Some knowledge of computer systems and architectures is assumed here.

Android apps are mostly written in Java. The code, along with any additional files and

data, is compiled by Android SDK (software development kit) tools into an Android

Package (APK), which is an archive file ending in .apk. An APK file contains all of an

Android app’s content and is the file used by Android devices to download the app. [3]

Android runtime (ART) is the runtime used on Android applications, which are com-

piled to Dalvik bytecode prior to that. ART and its antecedent, Dalvik, are meant to be

compatible: apps developed in Dalvik should also work when running with ART, apart

from a few exceptions [11]. The runtime executes the Dalvik Executable (Dex) format

and Dex bytecode specification. [4] [6]
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Figure 2.3: Android Stack [10].

The official IDE for developing Android apps, Android Studio [2], can be used to build

the APK of an app, as demonstrated in Figure 2.4. Unzipping the APK file reveals the

following contents, as shown in Figure 2.5. The most noteworthy is the classes.dex

file, which is the Dalvik Executable (hence the .dex extension) that runs on a device.

It contains Dalvik bytecode, which is not easily readable.

However, by disassembling it, one can see information about the Java classes used in

the app, e.g. by using an Android platform tool called dexdump [9], which converts

bytecode into assembly code. It returns a text file, which is more coherent, for the

classes.dex.

Reverse engineering Android applications helps gain an understanding of its workings.

Dissecting an Android application, or more specifically its APK, gives valuable insight

for security analyses, especially for the purpose of malware detection.

Dalvik Bytecode Format:

All of the details presented below, about the Dalvik bytecode format, have been taken

from [5, 7].
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In general, the machine configuration is meant to resemble existing commonplace ar-

chitectures; and its calling conventions are analogous to those in C. The machine model

makes use of registers and fixed-sized frames. Register names are of the form vX,

where X is a number; e.g. v0, v1, v2.

Every frame comprises a specific number of registers determined by the method. A

frame also contains auxiliary data needed for the method execution, like the program

counter and a reference to the .dex file, which contains the method.

Bit values like integers and floating point numbers use registers that are 32 bits wide,

whereas 64-bit values make use of adjacent register pairs. A 16-bit unsigned quantity

is the storage unit for instructions.

A lot of instructions are allowed to address only the first 16 registers, due to the fact

that methods commonly do not need more than 16 registers. However, in some cases,

a lot more registers can be allocated for reference. For instance, for a pair of catch-all

move instructions, registers in the range of v0 – v65535 can be addressed.

There are also a few "pseudo-instructions" that carry data payloads of variable length

referred to by normal instructions (for instance, fill-array-data). These instruc-

tions must never be come across during the execution flow. The locations of these

instructions must be bytecode offsets that are even-numbered, which is 4-byte aligned.

To comply with this, an extra nop instruction is used for spacing when required.

A few opcodes4 have a name suffix to distinguish between the type(s) they operate

on. 32-bit opcodes that are type-general are not marked. Type-general 64-bit opcodes

contain the -wide suffix. Type-specific opcodes consist of their type (or an abbrevia-

tion of it), such as -boolean, -char, -byte, -short, -int, -long, -float, -double,

-string, -class, -void, -object.

Opcodes with dissimilar instruction layouts or options are differentiated by an opcode

suffix, which is distinct from the rest of the name and specified after a "/".

The order of instruction arguments is destination followed by source, respectively. An

example of an instruction is given below, with its components explained.

In the instruction "move-wide/from16 vAA, vBBBB":
4Short for "operation code", it specifies the operation that needs to be performed by the (in this

context, virtual) machine.
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• "move" is the base opcode, which specifies the operation of moving a register’s

value.

• "wide" is the name suffix signifying that it operates on wide (64 bit) data.

• "from16" is the opcode suffix showing a variant, the source of which is a 16-bit

register reference.

• "vAA" is the destination register and must be in the range of v0 – v255.

• "vBBBB" is the source register and must be in the range of v0 – v65535.
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(a)

(b)

Figure 2.4: (a) & (b) illustrate building an app’s APK in Android Studio.
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(a)

(b)

Figure 2.5: (a) Unzipping an APK file & (b) the file’s contents.



Chapter 3

Light Android

This project builds on existing work done from [18] that includes a working imple-

mentation of the Light Android program, and a partially complete formal definition1.

The Light Android program converts Android apps in Dalvik code into a lightweight

program. It does this by using an abstract analysis language called Light Android. All

Dalvik opcodes are converted into simpler instructions, thereby also reducing the num-

ber of different categories; more than 200 Dalvik opcodes are represented by merely 6

Light Android instructions. This makes it easier for further analysis.

This chapter deals with the design and formal definition of the Light Android program,

including its syntax and operational semantics. The implementation details, specifying

the procedure for the conversion of opcodes into Light Android instructions, are given

in Chapter 5.

3.1 Syntax

The terms used to describe the operational semantics of the Light Android program are

given in this section, along with their explanation.

s, t, e, ret_result ∈ Reg, where Reg is the set of register names taken from Dalvik.

Register names are of the form vX, where X is a number; e.g. v0, v1, v2. Further

details are described in Section 2.2.

1The syntax and operational semantics presented in the next sections have been modified and elabo-
rated upon, from the work done in [18].

19
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• s: source register

• t: target or destination register

• e: exception-bearing register

• ret_result: the return value register, which stores the result a method returns, if

any.

m ∈Mtd (method), where Mtd is the set of method names defined in a class, and can

be an instance method or a static method.

l ∈ Lab (label), where Lab is a finite set of labels, which are numbers that are used to

denote program positions. If m is a method, lm denotes the label l inside m.

o ∈ Loc (location), where Loc is a set of locations, which are pointers in the stack to

an object in the heap.

f ∈ Fld ( f ield), where Fld consists of static and instance fields.

C ∈ Cls (class), where Cls is the set of classes, each of which define instance and static

fields and methods, its superclass, and indicate the interfaces the class implements.

T ∈ Typ (method type), where Typ is a method type used to disambiguate overloaded

methods.

v ∈ Val (values), which consist of String and Int values.

The instruction format is given below, specifying the type and number of operands of

each:

i ∈ Ins ::= instructions :

mov t v

| mov t s

| mov t s. f

| mov t. f s

| mov t C. f

| mov C. f s assignment

| op

| op t s

| op t s s′

| op t s v
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| op t s C operation

| jmp l

| jmp l s

| jmp l s s′

| jmp ls s jump

| new t C allocation

| inv ret_resultC.m:T C.m : T xs call

| ret

| ret s return

A code block consists of labels with instructions (a partial mapping):

B: Lab ⇀ Ins code block

If an instruction has label l, the next instruction in a block is obtained at l + 1. An

example of a code block in a method’s body can be seen below.

|0000: const/4 v2, #int 1 // #1

|0001: const/4 v1, #int 0 // #0

|0002: goto 000e // -0003

...

In order to visualise the process of programs being converted into Dalvik, the follow-

ing, simplistic examples are given. On the left is a Java code snippet and on the right

is its Dalvik equivalent, the kind of instructions that it generates2. The first example is

that of an infinite loop3.

int x = 0;

while(true){

x = x+2;

}

0028: const/4 v5, #int 0

0029: add-int/lit8 v5, v5, #int 2

002b: goto 0029

The second example calculates the factorial of a number, in this case, 6.

2The instructions presented here correspond to real Dalvik code generated; the code snippets are
from an Android app written in Java.

3This example will not have a result in our semantics as it only handles terminating programs, as
explained in Section 3.3.
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int number = 6;

int fact = 1 ;

while (number > 0) {

fact *= number;

number -= 1;

}

...

0014: const/4 v3, #int 6 // #6

0015: const/4 v0, #int 1 // #1

0016: if-lez v3, 001c // +0006

0018: mul-int/2addr v0, v3

0019: add-int/lit8 v3, v3, #int -1 // #ff

001b: goto 0016 // -0005

001c: ...

There exists a mapping of a method’s class, method name and type to its method def-

inition, which consists of a tuple of arguments, body and registers. The method body

consists of labels and instructions, as mentioned above. This is captured in the follow-

ing configuration:

Π: Cls ×Mtd × Typ→ Args × (Lab ⇀ Ins) × Regs

The environment consists of the stack and heap. The stack contains a list of registers

mapped to values and locations. The heap consists of mappings from locations and

classes to fields, which in turn are mapped to values and locations.

S: Stk[Reg ⇀ Val ] Loc] stack

H: Loc ] Cls ⇀ Fld ⇀ Val ] Loc heap

3.2 Translation – from Dalvik opcodes to Light Android

instructions

This section provides an insight into the translation procedure; of Dalvik opcodes being

converted to Light Android instructions. It also provides the reader with an intuition

behind the translation. A fairly lax approach is adopted in this explanation to avoid

being pedantic about low-level details. This includes omitting exact syntax or variants

of some Dalvik opcodes as specified in the Dalvik bytecode format in [5].

For example, the disambiguating suffixes of some opcodes, as shown in Section 2.2,

will not be delved into. Additionally, arguments here, such as register names, corre-

spond to our syntax described in the above section, rather than their exact descriptions,

e.g. according to their sizes (vAAAA – a destination register of 16 bits will simply be

denoted as t).
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Each Dalvik opcode’s syntax and description is given below, along with its Light An-

droid translation. However, we omit the explanation of opcodes dealing with arrays,

for simplicity. Table 3.1 gives a bird’s-eye view of the mapping from Dalvik opcodes

to abstract instructions in Light Android.

All explanations below are derived from [5].

Dalvik Light Android Dalvik Light Android

move t s mov t s nop, monitor s,

const t v mov t v move-exception t, op

iget t s f mov t s.f check-cast s C

iput s t f mov t.f s neg t s, not t s, oph t s

sget t C f mov t C.f *-to-* t s

sput s C f mov C.f s cmp, add, sub, rsub, mul, oph t s s’,

new-instance t C new t C div, rem, and, or, xor, shl, oph t s v,

l: invoke args C.m:T inv ret_result C.m:T args shr, ushr, instance-of t s C oph t s C

l+1: move-result t mov t ret_result *-switch s l jmp l

goto l jmp l l: *-switch-payload ident size key(s) ls jmph ls s

if-* s l jmph l s return-void, throw e ret

if-* s s’ l jmph l s s’ return ret_result ret s

Table 3.1: Dalvik to Light Android. * refers to a wildcard character, to match all of the

variations of an opcode format e.g., *-switch s l denotes both packed-switch as well as

sparse-switch. Refer to specific opcode translations for more details.

Opcodes translated to mov:

• All opcodes of the form move t s, except the move-result and move-

exception variants, consist of a destination and source register as arguments.

They describe the operation of moving the contents of one register (source)

into another (destination). Some examples include: move, move/from16, move-

wide, etc. These opcodes are converted to "mov t s" in Light Android.

• move-result t variants move the result of the most recent method invoca-

tion into the given register, t. Therefore, this must be the instruction right af-

ter an invoke- instruction. Otherwise, it is not valid. These opcodes include:

move-result (for a single-word non-object result), move-result-wide (for a

double-word result), and move-result-object (for an object result).
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These opcodes are represented by "mov t ret_result" in Light Android, where

ret_result4 is the return value register of the method called. The contents of

ret_result are moved to the target register, t. Therefore, this then specifies the

same operation as the above move opcodes, moving the contents of the source

register into the target register.

• All const t v opcodes move a given literal value or a reference to the string/-

class specified by the given index, into a register. Its first argument is the desti-

nation register, and a value or a reference is its second. Some examples include:

const-string, const-class, const/16, etc. These opcodes are converted to

"mov t v" in Light Android.

• iget t s f performs the object instance field operation of storing an instance

field, f , into the value/destination register, t, where the instance is referenced

by the object register, s. Its arguments consist of a value register or pair (which

is the destination register), an object register, and an instance field reference

index. Some examples include: iget-wide, iget-object, iget-boolean,

iget-byte, etc.

These opcodes are converted to "mov t s.f" in Light Android.

• iput s t f performs the object instance field operation of putting the source

register’s, s, contents into an instance field, f , the reference of which is stored in

t. Some examples include: iput-wide, iput-object, iput-boolean, iput-

byte, etc.

The Light Android equivalent of these opcodes is "mov t.f s".

• sget t C f, is similar to the iget opcodes, except it refers to the given static

field operation with the static field, rather than the instance field. Some examples

include sget-object, sget-boolean, sget-byte, sget-char, sget-short.

These opcodes are converted to "mov t C.f" in Light Android.

• sput s C f is similar to the iput opcodes, except it refers to the given static

field operation with the static field, rather than the instance field. Some examples

include sput-object, sput-boolean, sput-byte, sput-char, sput-short.

These opcodes are represented by "mov C.f s" in Light Android.

4Further details on this register are presented in Section 5.1.4, detailing its use and purpose.
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Opcodes translated to op:

• nop is an opcode that does not perform any operation. It has no argument.

Pseudo-instructions that carry data, such as packed-switch-payload and

sparse-switch-payload, are tagged with this opcode.

monitor-enter s and monitor-exit s obtain and release the monitor5 of the

indicated object, respectively. Its argument is a reference-bearing register.

move-exception t stores an exception that is just caught into the specified reg-

ister, which is the only argument of this opcode. It is only valid when it occurs

as the first instruction of an exception handler and is invalid otherwise.

check-cast s C consists of a register containing a reference, and a type index,

as its arguments. It throws a ClassCastException if the reference in the given

register cannot be cast to the given type.

All of the above opcodes are mapped to the "op" instruction in Light Android.

• Opcodes defining unary operations such as negation and type conversions consist

of a destination register, and a source register as its arguments. The identified op-

eration is performed on the contents of the source register, the result of which is

stored in the destination register. Some examples include: not-int (unary ones-

complement), neg-long (unary twos-complement), int-to-float, long-to-

int, etc.

These opcodes are mapped to "oph t s" in Light Android, where h denotes the

unary operation performed.

• The opcodes that compare floating point or long values consist of a destination

register (t), and two source registers (s, s′) containing the values to be compared,

as arguments. A result of 0 is stored in t if s == s′, 1 is stored if s > s′ and −1 if

s < s′. For example, cmp-long, to compare long values.

Opcodes defining binary operations are of different kinds, mainly differing in

the number and type of arguments.

An opcode of the form binop t s s’ performs a binary operation with three

arguments. It consists of two source registers as operands and stores its re-

5A monitor is a construct for multi-threading synchronisation.
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sult in a destination register. binop signifies an arbitrary binary operation, e.g.

add-float (floating point addition), sub-double (floating point subtraction),

and-int (bitwise AND), or-long (bitwise OR), shl-int (bitwise shift left),

shr-long (bitwise signed shift right).

An opcode of the form binop/2addr s s’ performs a binary operation with

two arguments. It consists of a first source and destination register, and the

second source register, as arguments. This implies that after performing the

binary operation on the two source registers, the result is stored in the first. Some

examples of this type include: rem-int/2addr (twos-complement remainder

after division), or-long/2addr (bitwise OR), sub-float/2addr (floating point

subtraction), mul-double/2addr (floating point multiplication).

All of the above opcodes are converted to "oph t s s′ " in the Light Android

program, where h denotes the binary operation performed. In the Light Android

design, binop/2addr s s’ opcodes are also converted to this format, despite

having two registers, instead of three. The first source register is duplicated and

saved as the target register, t, which is perhaps better visualised as "oph s s s′".

• binop/lit16 t s v and binop/lit8 t s v perform the specified binary

operation on a source register, s, and a literal value, v, of 16 bits and 8 bits,

respectively, storing the result in the destination register, t. Some examples in-

clude: mul-int/lit16, div-int/lit16, shl-int/lit8, shr-int/lit8.

These opcodes are converted to "oph t s v" in Light Android, where h denotes

the binary operation performed.

• instance-of t s C consists of a destination register, a source register contain-

ing a reference, and a type index, as its arguments. 1 is stored in the destination

register if the given reference is an instance of the given type, and 0 otherwise.

This opcode is converted to "oph t s C", where h defines the operation of check-

ing whether the given reference in the source register is of the specified type, and

stores the result as mentioned above.

Opcodes translated to jmp:

• goto l specifies an unconditional jump to the indicated instruction, given in the

label, l, which is a signed branch offset (of varying sizes). These include goto
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l, goto/16 and goto/32.

These are converted to "jmp l" in Light Android.

• Opcodes containing if-test.. are similar to if-then statements in high-level

programming languages. The guard of the control flow statement is a compari-

son of values here. If the comparison succeeds as given, the program branches

to the given label.

Opcodes of the form if-testz s l compare the contents of a register with

zero. They consist of a register, s, for comparison, and the label, l, to jump to,

as arguments. The test signifies relational comparisons, e.g. if-eqz (equal to

zero), if-ltz (less than zero), if-gez (greater than or equal to zero), etc.

These are mapped to the "jmph l s" instruction, where h denotes the comparison

performed with zero.

• Opcodes of the form if-test s s’ l specify a comparison of two registers’

values and a label to branch to if the comparison succeeds as given. The test

signifies relational comparisons between the two source registers’ values, e.g.

if-eq (the two values are equal), if-lt (the first value is less than the second),

if-ge (the first value is greater than or equal to the second), etc.

These opcodes are converted to "jmph l s s′", where h denotes the relational

comparison performed.

• Two forms of opcodes handle switch cases: packed-switch s l and sparse-

switch s l. They specify a register to test, s, and l, a label of its data payload:

packed-switch-payload and sparse-switch-payload, respectively. If the

value of s is matched with an index of a table entry in the payload, it makes

a jump to an instruction based on the label specified. Otherwise, the jump is

made to the next label, after the original switch instruction and not after the data

payload pseudo-instruction.

The format of the payloads consists of ident, the identifying pseudo-opcode to

determine the kind of switch; size, the number of table entries; key, the first key

(the first and lowest switch case value) in the case of packed-switch-payload,

and a list of all the keys for sparse-switch-payload; followed by ls, the list

of target labels (the offset is relative to the original switch opcode and not this

table).
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packed-switch s l and sparse-switch s l are converted to "jmp l" in Light

Android, specifying the jump to the data payload table. packed-switch-

payload and sparse-switch-payload are converted to "jmph ls s", where h

is the equality check of s and the indexes of ls.

Opcodes translated to new:

• new-instance t C creates a new instance of the specified type (must be a non-

array class) and stores its reference in the destination register. Its arguments are

the destination register and the type index.

This is represented as "new t C" in Light Android.

Opcodes translated to inv:

invoke-kind args C.m:T is a method call. It consists of the arguments, args, to be

passed to the method, and the method reference index (which consists of the method’s

class name, method name and its type, C.m : T ). The kind of this invocation depends on

the type of method to be called, e.g. invoke-virtual (for a normal virtual method),

invoke-static (for a static method), invoke-interface (for an interface method).

Another variant of this opcode specifies a range of registers as arguments. For example,

invoke-virtual/range, invoke-static/range.

A result-specific move-result variant may follow an invoke instruction, to store the

result of the invocation, if any.

These opcodes are represented as "inv ret_result C.m:T args" in Light Android, where

ret_result is the return value register of the callee method.

Opcodes translated to ret:

• throw e throws an exception, indicated in the register, e.

return-void returns from a void method.

These two opcodes are mapped to "ret" in Light Android.

• Other variants of the return instruction return from a non-void method, e.g.

from a value-returning or object-returning method. These are return, return-
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wide and return-object, which consist of a return value register (or register-

pair, in the case of return-wide) as its argument.

These opcodes are represented by "ret s" in Light Android.

3.3 Operational Semantics

Operational semantics of a language can be presented in different ways. Some are

more abstract, containing only the terms used in the program as machine states and

their evaluation. However, some are more representative of the structures manipulated

by a compiler or interpreter and contain details regarding its behaviour. [35] This is

demonstrated in the semantics below, which describes the operations that are carried

out in the stack and heap as a result of evaluating an instruction.

The operational semantics here are given in the big-step style, also known as natural

semantics, which show a term being evaluated to its final result, as opposed to a step by

step transition in the small-step style6. This means that the semantics can only account

for terminating computations. It was designed to model abstract effects rather than

full computations, which are always terminating. Therefore, the endless loop is not

modelled in this semantics.

The corresponding inference rule for each variant of the instructions are given, with

their explanation. In the judgement, S1,H1 ` lm : mov t. f s ⇓ S2,H2 (as an example),

our context or environment consists of the stack and the heap. The turnstile symbol,

`, separates the context or environment on its left from the executed instruction on its

right. Overall, it can be read as – the term lm : mov t. f s, in the context S1,H1, evaluates

to S2,H2. Of course, this proposition only holds when the premises are satisfied.

The most common premise in the instructions is the following:

S1,H1 ` (l +1)m : _ ⇓ S2,H2.

This shows the state of the machine moving on to the next label, after carrying out

specific operations evaluating an instruction. Any changes made to the stack and heap

are reflected in the updated versions. The instruction belonging to the next label can

be of any form and evaluates to S2,H2, a different stack and heap configuration. The

6As introduced in Section 2.1.1.
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subscript in (l +1)m, or lm in general, associates the label with its respective method,

m.

S1,H1 ` lm : _ ⇓ S1,H1
(Default)

Given above is the default case that matches anything, which does nothing to change

the state of the heap or stack. The program does not move to a new state or label.

3.3.1 mov instruction

The mov instruction specifies an assignment and consists of two operands. It assigns

the second operand (the source) to the first (the destination or target). The following

instructions are similar in operation – mapping the first operand to the second – but

vary in the nature of the operands, or rather, their type.

S2 = S1 [t 7→ v]

S2,H1 ` (l +1)m : _ ⇓ S3,H2

S1,H1 ` lm : mov t v ⇓ S3,H2
(a)

(a) This mov instruction consists of a target register, t, and a value, v, as the source.

The stack is updated by mapping the target register to the value. Moving on to the next

label, this updated stack is used.

S2 = S1 [t 7→ S1(s)]

S2,H1 ` (l +1)m : _ ⇓ S3,H2

S1,H1 ` lm : mov t s ⇓ S3,H2
(b)

(b) Similar to (a), except the source is a register and its contents must be retrieved

from the stack, to which the target register, t, is mapped to.

S2 = S1 [t 7→ H1(S1(s)) ( f )]

S2,H1 ` (l +1)m : _ ⇓ S3,H2

S1,H1 ` lm : mov t s. f ⇓ S3,H2
(c)
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(c) The source here consists of a field of an object in the heap, that is pointed to by a

location in the stack and held in a register. So, H(S(s)) is the object and H(S(s))( f ) is

the value of the contents of field, f . t is mapped to this field, and the stack is updated

accordingly, moving to the next label. To elucidate this, an example is given below:

mov v5 v7.x – assigns the value in the field, x, to the target register, v5. The location

of the field x is found in v7. This is illustrated in Figure 3.1.

Figure 3.1: The stack and heap configuration for the example given: look up the stack

for v7 then go to the location it points to and retrieve the value from the heap.

f s = H1(S1(t)) [ f 7→ S1(s)]

S1,H1 [S(t) 7→ f s] ` (l +1)m : _ ⇓ S2,H2

S1,H1 ` lm : mov t. f s ⇓ S2,H2
(d)

(d) This is the reverse of the the above; the location of the field, f , is pointed to

by t instead of s. An updated object, f s, is created to map f to the contents of the

register, s, stored in the stack. In the rest of the code, the heap is updated with this new

information.

S2 = S1 [t 7→ H1(C) ( f )]

S2,H1 ` (l +1)m : _ ⇓ S3,H2

S1,H1 ` lm : mov t C. f ⇓ S3,H2
(e)

(e) The target register, t, is mapped to the (static) field pointed to by a class in the

heap. The stack is updated to reflect this change.
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f s = H1(C) [ f 7→ S1(s)]

S1,H1 [C 7→ f s] ` (l +1)m : _ ⇓ S2,H2

S1,H1 ` lm : mov C. f s ⇓ S2,H2
(f)

(f) This is the opposite of the above; here, the field of a class, stored in the heap, is

updated to the contents of s in the stack, by the updated object, f s. The heap is updated

to show the class being mapped to f s.

3.3.2 op instruction

The op instruction specifies an operation being carried out, in terms of applying a

function, h, to one or more operands, and storing the result in a target register, t. For

each case, the operations defined by h vary according to the opcodes they represent, as

explained in Section 3.2.

S1,H1 ` (l +1)m : _ ⇓ S2,H2

S1,H1 ` lm : op ⇓ S2,H2
(a)

(a) This denotes the absence of operands. Therefore, no changes are made, except

moving the state of computation to the next label. It signifies an operation being car-

ried out according to the opcode it represents but does not store its operands, if any.

Opcodes being mapped to this instruction include monitor-enter, monitor-exit,

move-result, check-cast, and nop.

The following inference rules are similar, except for the number of source operands

as well as their type. Each instruction variant stores the result of the function applied

to the source operand(s), in t, and then updates the stack accordingly. The source

operands in (b), (c), (d), and (e), are one source register, two source registers, one

source register and a value, and one source register and a class, respectively.

Examples include:

op v0 v5,

op v1 v7 v6,

op v3 v2 7,

op v5 v9 Laaaaaa/qjjqjj;.
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S2 = S1 [t 7→ h(S1(s))]

S2,H1 ` (l +1)m : _ ⇓ S3,H2

S1,H1 ` lm : oph t s ⇓ S3,H2
(b)

(b) Here, h denotes a unary operation on the source register’s contents. For example,

h could denote the operations not-int, neg-long, int-to-long, long-to-float,

etc.

S2 = S1 [t 7→ h(S1(s), S1(s′))]

S2,H1 ` (l +1)m : _ ⇓ S3,H2

S1,H1 ` lm : oph t s s′ ⇓ S3,H2
(c)

(c) The h here denotes either the operation of comparing two floating point or long

values (as specified by the cmp opcodes), or a binary operation on the two source reg-

isters, such as sub-int, and-long, add-float/2addr. The former operation stores 0

in t if s == s′, 1 if s > s′ and −1 if s < s′ and the latter merely stores the result of the

operation.

S2 = S1 [t 7→ h(S1(s), v)]

S2,H1 ` (l +1)m : _ ⇓ S3,H2

S1,H1 ` lm : oph t s v ⇓ S3,H2
(d)

(d) h here defines a binary operation on the source register and literal value, e.g.

div-int/lit16, rem-int/lit8, or-int/lit16.

S2 = S1 [t 7→ h(S1(s), C)]

S2,H1 ` (l +1)m : _ ⇓ S3,H2

S1,H1 ` lm : oph t s C ⇓ S3,H2
(e)

(e) This represents the instance-of t s C opcode. Therefore, h defines the oper-

ation of checking whether the given reference in the source register is of the specified

type. 1 is stored in t if the given reference is an instance of the given type, and 0

otherwise.
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3.3.3 jmp instruction

The jmp instruction, in essence, specifies a label that the machine may jump to. This

may be an unconditional jump or a conditional one, like a switch-case statement.

S1,H1 ` l′m : _ ⇓ S2,H2

S1,H1 ` lm : jmp l′ ⇓ S2,H2
(a)

(a) Unconditionally jump to the label specified, which can have an instruction of any

type and may evaluate to a different configuration of the stack and heap. l′m denotes

label l′ in m. E.g. jmp 15.

l′′ = h(S1(s))? l′ : l +1

S1,H1 ` l′′m : _ ⇓ S2,H2

S1,H1 ` lm : jmph l′ s ⇓ S2,H2
(b)

(b) Apply the unary function, h, to the source register’s value. Depending on the

result, either jump to the given label (l′) when true or move to the next label, otherwise.

h is used to encode conditional branches (if statements). Here, it specifies a comparison

with zero, e.g. if-eqz, if-ltz, if-gez.

For example, for jmph 10 v1, where the h function is if-eqz:

h(v1) =

true, if v1 = 0.

f alse, otherwise.

Here, if the result is true, the jump is made to the instruction with label "10" and

otherwise to the next label. Others are handled similarly.

l′′ = h(S1(s), S1(s′))? l′ : l +1

S1,H1 ` l′′m : _ ⇓ S2,H2

S1,H1 ` lm : jmph l′ s s′ ⇓ S2,H2
(c)

(c) Here, h is a binary function and is applied to the two source registers’ values.

It either jumps to the given label or the next label, depending on the outcome of the
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function. h denotes a comparison between the two source registers’ values, e.g. if-eq,

if-lt, if-ge.

An example of this instruction variant: jmp 7 v3 v4.

0 6 i < len(ls)

l′ = h(S1(s))? ls[i] : l +1

S1,H1 ` l′m : _ ⇓ S2,H2

S1,H1 ` lm : jmph ls s ⇓ S2,H2
(d)

(d) This is equivalent to a switch-case statement, where the cases are the elements of

ls, which is a list of labels. The function, h, is applied to the source register’s value,

comparing it to the indexes of ls. Depending on whether there is an index matching

the source register’s value, it may jump to the label specified in that index or move to

the next label, if there is no match.

For example: jmp ls v0, where v0 = 2, and ls = [l1, l2, l3], the indexes of which are

0, 1, and 2, respectively. Here, the jump is made to l3.

3.3.4 new instruction

The new instruction specifies an allocation that is made in the heap; e.g., for creating a

new instance or array. A target register is specified as its first operand, which records

the location of the allocation made.

o /∈ dom(H1) C /∈ dom(H1)

f s = { f 7→ ⊥ | f ∈ iflds(C)}

f s′ = { f 7→ ⊥ | f ∈ sflds(C)}

S2 = S1 [t 7→ o] H2 = H1 [o 7→ f s] [C 7→ f s′]

S2,H2 ` (l +1)m : _ ⇓ S3,H3

S1,H1 ` lm : new t C ⇓ S3,H3
(a)

(a) This variant of the new instruction creates a new class, which does not already

exist in the domain of the heap. Two objects (maps), f s and f s′, are declared to store

the instance fields and static fields of the class, respectively.
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The stack is updated to show t being mapped to this class’s location, o, which must not

already be in the heap’s domain. The heap is updated to show o being mapped to the

instance fields, f s, and the class, C, to its static fields, f s′.

o /∈ dom(H1) C ∈ dom(H1)

f s = { f 7→ ⊥ | f ∈ iflds(C)}

S2 = S1 [t 7→ o] H2 = H1 [o 7→ f s]

S2,H2 ` (l +1)m : _ ⇓ S3,H3

S1,H1 ` lm : new t C ⇓ S3,H3
(b)

(b) This is similar to (a), except the class is in the domain of the heap and only f s is

created for the instance fields of the class. The updated stack maps t to o and the heap

maps o to f s.

3.3.5 inv instruction

The inv instruction invokes or calls a specified method. It will be explained with

the help of an example - "inv v Ljava/lang/Math;, min, (II)I, v3, v4". The

inference rule for evaluating this rule is as given below:

(xs, B, rs) = Π (C, m′, T )

f s = {rs[ f ] 7→ ⊥ | f ∈ [1..#rs]} f s′ = f s [xs [ f ] 7→ S1(args [ f ]) | f ∈ [1..#xs]]

f s′,H1 ` BC.m′:T ⇓ S2,H2 S1[ret_result 7→ S2(ret_result)],H2 ` (l +1)m : _ ⇓ S3,H3

S1,H1 ` lm : inv ret_result C.m′ : T args ⇓ S3,H3

The instruction consists of the following operands, in order:

• ret_result – the return value register of this callee method. ["v" in the example]

• C.m′ : T – details of the method’s name and its disambiguating class and type.

["Ljava/lang/Math;, min, (II)I" in the example]

• args – the method’s argument registers. ["v3, v4" in the example]

m′ refers to the callee method, to distinguish it from the method associated with the

label, lm. As described in Section 3.1:
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Π: Cls ×Mtd × Typ→ Args × (Lab ⇀ Ins) × Regs

Therefore, the right-hand side of "(xs,B,rs) = Π(C,m′,T )" yields the tuple (Args,

Lab⇀Ins, Regs), which is stored in the left-hand side tuple as follows:

• xs – argument registers (Args)

• B – the code block consisting of label and instruction pairs (Lab ⇀ Ins)

• rs – registers (Regs)

#rs refers to the number of registers and #xs refers to the number of argument registers.

f s creates an empty array of registers, of length #rs. f s′ maps registers initialised in

f s, from xs to the contents of the argument registers, args, in the instruction, retrieved

from the stack of the caller method.

With this new object (register map), f s′, the code block of the invoked method, BC.m′:T ,

is executed, which may result in a new stack and heap configuration, S2,H2. The

dedicated register, "v", for storing the return result of the invoked method, is mapped

to the contents of the return value register of the callee method, retrieved from the

callee’s stack, S2.

3.3.6 ret instruction

The ret instruction is a return statement. This instruction is usually at the end of the

method, therefore, the state of computation does not move to a next label-instruction

pair.

S1,H1 ` lm : ret ⇓ S1,H1
(a)

S2 = S1 [ret_result 7→ S1(s)]
S1,H1 ` lm : ret s ⇓ S2,H1

(b)

(a) Return from a void method and do nothing.

(b) Map the return value register of this method to the contents of the given source

register, s, and update the stack.
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Light FuncDroid

The purpose of the Light FuncDroid program1 is to extract functions from the output of

Light Android. It converts the Light Android instructions to enriched lambda expres-

sions. A functional representation is useful for carrying out subsequent analyses, to

check security properties, e.g. to prove that certain undesirable features are not present

in an application. The lambda calculus can also be reasoned about mathematically and

helps with conducting rigorous proofs, as opposed to the light assembly code that is

the output of Light Android.

The Light FuncDroid program is simpler and more concise than the Light Android

program. Clearly, this is because Light Android does all of the heavy-lifting in terms of

dealing with the Dalvik code and its executable file, storing and distinguishing between

class names, method names, and instructions, etc. It decodes all the opcodes, which

are more than 200, as opposed to just a handful that need to be translated by Light

FuncDroid. Consequently, the design and implementation of Light FuncDroid is also

much more straightforward.

This chapter deals with the design and formal definition of the Light FuncDroid pro-

gram, including its syntax and operational semantics. The implementation details,

specifying the procedure for the conversion of Light Android instructions into lambda

expressions, are given in the next chapter.

1Design and implementation decisions were aided by [12].

38
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4.1 Syntax

The terms used to describe the operational semantics of the Light FuncDroid program

are given in this section. The syntax used here is similar to that presented in the pre-

vious chapter, for Light Android. Therefore, we do not repeat their explanation here.

We denote the terms or lambda terms by the metavariable, e, and refer to them as

expressions.

e ∈ Exp ::= expressions :

x variable

| λ x . e abstraction

| e1 e2 application

| let e1 = e2 in e3 assignment

| if e1 then e2 else e3 conditional

| l label

| v value

| ls list of target labels

| args method arguments

| C.m:T a method’s class, method name and type

| h (e1,..,en) an operation with parameter(s)

The variables in the body of a lambda expression are specified below. In our case,

they are value, reference-bearing or object registers. We denote the list of registers

allocated for a method’s use as xs. The arguments passed to an invoked function is a

list of argument registers, denoted by args. Essentially, they are lists of variables.

x ∈ Var ::= variables :

s source register

| t target register

| ret_result return value register

| s.f, t.f, C.f object registers (containing fields)

| C index referencing a non-array class

The core lambda calculus grammar presented in Section 2.1.2 only consisted of lambda

abstractions as values, as the simplest reduced state. The values presented below have

been augmented with String, numeric, and Boolean constants.
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v ∈ Val ::= values :

λx . e abstraction value

| nv numeric values

| sv String values

| true true value

| false false value

| unit unit or void

We make use of a mapping, F(l), from a particular label, l, to its translated expression,

e. These labels are carried forward from the Dalvik and Light Android instructions. In

our translation, we introduce an expression corresponding to each label in the program.

Subsequent to the translation, the labels can be unfolded (replaced by their respective

expression) to resemble lexically nested functions. However, some labels remain that

exhibit looping behaviour or recursive calls.

F(l)→ e

The following, simplistic examples are given, to briefly visualise the process and syn-

tax of the translation:

On the left are Light Android instructions, and on the right are its equivalent functional

expressions. The first example demonstrates basic allocation of values, and then per-

forming an operation, h, e.g. addition or subtraction, using those values. Since it is a

void method, there is no return value, and that is denoted by unit. Here, the list of

method registers, xs, consists of v0 and v1.

0: const [v0] [10]

1: const [v1] [5]

2: op [v0] [v0, v1]

3: ret [] []

0: λ v0 λ v1 . let v0 = 10 in (1) v0 v1

1: λ v0 λ v1 . let v1 = 5 in (2) v0 v1

2: λ v0 λ v1 . let v0 = h(v0, v1) in (3)

v0 v1

3: λ v0 λ v1 . unit

The second example demonstrates a method invocation, C.m : T , with a list of argument

registers, args, where:

C – "Lcom/example/app/MainActivity;"

m – "getResult"

T – "(II)I"
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args – "v0, v1".

This example shows storing the result of the invoked function, to the return value reg-

ister, ret_result, which is "v". This value is then moved to another register, v2. This

method then returns the value stored in v2.

0: const [v0] [20]

1: const [v1] [30]

2: inv [ret_result] [Lcom/example/app/MainActivity;,

getResult,(II)I, v0, v1]

3: mov [v2] [ret_result]

4: ret [] []

0: λ v0 λ v1 λ v2. let v0 = 20 in (1) v0 v1 v2

1: λ v0 λ v1 λ v2. let v1 = 30 in (2) v0 v1 v2

2: λ v0 λ v1 λ v2. let ret_result = (Lcom/example/app/

MainActivity;.getResult:(II)I) v0 v1 in (3) v0 v1 v2

3: λ v0 λ v1 λ v2. let v2 = ret_result in (4) v0 v1 v2

4: λ v0 λ v1 λ v2. v2

4.2 Translation – from Light Android instructions to

Light FuncDroid expressions

This section provides details of the translation procedure; of Light Android instructions

being converted to Light FuncDroid expressions. We do not delve into the details of the

input; the Light Android instructions and their syntax have been covered extensively in

the previous chapter. We also continue to omit the explanation of instructions dealing

with arrays, for simplicity.

Table 4.1 provides a quick look at the mapping from all of the instructions in Light

Android to expressions in Light FuncDroid. The left-hand side column lists all Light
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Android instruction variants, at a specific location or label, l. The right-hand side

specifies the resultant functional expression. As mentioned earlier, xs refers to the list

of registers a method makes use of. It can be retrieved from the data structure defined

in Light Android, as will be evident in Section 5.1.2.

Light Android Instruction Lambda Expression

(at location l)

mov t v λxs. let t = v in (l+1) xs

mov t s λxs. let t = s in (l+1) xs

mov t s.f λxs. let t = s.f in (l+1) xs

mov t.f s λxs. let t.f = s in (l+1) xs

mov t C.f λxs. let t = C.f in (l+1) xs

mov C.f s λxs. let C.f = s in (l+1) xs

op λxs. l+1 xs

oph t s λxs. let t = h(s) in (l+1) xs

oph t s s’ λxs. let t = h(s, s’) in (l+1) xs

oph t s v λxs. let t = h(s, v) in (l+1) xs

oph t s C λxs. let t = h(s, C) in (l+1) xs

jmp l’ λxs. l’ xs

jmph l’ s λxs. if h(s) then l’ xs else (l+1) xs

jmph l’ s s’ λxs. if h(s, s’) then l’ xs else (l+1) xs

jmph ls s λxs. if h(s) then ls[0] xs, ..., ls[n] xs else (l+1) xs

new t C λxs. let t = unit in (l+1) xs

inv ret_result C.m:T args λxs. let ret_result = C.m:T args in (l+1) xs

ret λxs. unit

ret s λxs. s

Table 4.1: Light Android to Lambda Expressions.

There are three main types of expressions that are the result of translating Light An-

droid instructions to lambda expressions: an assignment, a conditional statement, and

a variable which contains the return value register of a method.
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Most Light Android instructions are converted to an assignment expression. The target

or destination is similar in all of the instructions: it is a register name, stored in a

variable term. However, the source differs from one instruction to another.

mov instructions:

Light Android instructions of type "mov" denote an assignment and consist of two

operands. It assigns the second operand (the source) to the first (the target). In Light

FuncDroid we perform the same assignment, with the scope of this assignment being

the next label.

op instructions:

Light Android instructions of type "op" specify an operation being performed, either

unary or binary, containing one or two operands. An operation with no operands, op,

simply moves to the next label; we abstract away from the operation performed. It is

represented as the application of the next label to the method registers, xs.

All other instructions of type "op", containing one or two source registers, are trans-

lated in the same way. The result of the operation performed on the source register(s)

is assigned to the target register specified. The scope of this assignment is the next la-

bel, therefore the expression consists of an application of the next label to the method

registers.

jmp instructions:

Light Android instructions of type "jmp" specify an unconditional, or conditional jump

to a label. Unconditional jumps are often used to exhibit looping behaviour. Condi-

tional jumps emulate if-then statements and switch cases.

jmp l signifies an unconditional jump to the label, l. As a lambda expression, we

denote this as the application of the this label to the method registers, xs.

jmph l s and jmph l s s’ represent control flow statements, with the function, h,

being its guard. As a lambda expression, we encode this in an if-then-else conditional

statement. If the function evaluates to true, for a given relational comparison for the

source registers (s and s′), then the jump is made to the target label, l, else the execution

moves to the next label.

Instructions of type jmph ls s, which consist of a list of target labels, ls, and a source

register to test, s, emulate switch-case statements. The value of the source register is
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checked, whether it is equal to any of the indexes of the list of target labels. If an

equality is found, the jump is made to the specific target label at that index, otherwise

the jump is made to the next label.

As a lambda expression, we encode this in an if-then-else conditional statement, where

the equality test is the guard and the true branch is the list of target labels, and the false

branch is the next label, both of which are an application to the method registers.

new instruction:

The Light Android instruction "new" creates a new instance of the specified type, a

non-array class, and stores its reference in the target register. In Light FuncDroid, we

do not store the reference of the new instance; we only assign the value of "unit" to the

target register.

inv instruction:

Instructions with inv are used to call or invoke methods. They consist of the class

name, method name, and method type, of the method that needs to be invoked. It

also specifies the arguments that are to be supplied to this method call. As a lambda

expression, we encode the method details as a function, applied to the arguments, the

result (return value) of which is stored in the return value register, ret_result.

ret instructions:

Light Android "ret" instructions represent return statements at the end of methods, after

which there is no instruction to be executed. The variants of this instruction type are

ret and ret s.

The former denotes returning from a method of type void, while the latter denotes a re-

turn statement of a non-void method. ret s specifies a source register, which contains

the return value. The Light FuncDroid equivalent of these instructions are the term

"unit" (representing void), and the source register stored in a variable, respectively.
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4.3 Operational Semantics

The operational semantics2 described here are a derivative of the Light Android oper-

ational semantics, and follow some of its terminology and structure. Therefore, we do

not delve into the minutiae in our explanation, as in-depth descriptions have already

been presented in Chapter 3. We continue with the big-step style or natural semantics,

accounting for terminating computations only. Likewise, our context or environment

also consists of the stack and the heap. However, every conclusion here presents an

expression.

S1,H1 ` λx . e ⇓ λx . e, S1,H1
(Abstraction Value)

• This rule shows that a lambda abstraction is a value, as we have seen in the pure

lambda calculus in Section 2.1.2.

S1,H1 ` v ⇓ v, S1,H1
(Value)

• Values cannot be evaluated further and therefore, no change is made to the stack

and heap.

S1,H1 ` e1 ⇓ v1, S2,H2

S2,H2 ` e2 [x 7→ v1] ⇓ v2, S3,H3

S1,H1 ` let x = e1 in e2 ⇓ v2, S3,H3
(Assignment)

• Here, we see that the expression, e1, has value, v1, as its final result of compu-

tation. All occurrences of the variable, x, in the term, e2, are replaced by this

value. The resultant expression has the final arbitrary value of v2. The stack and

heap configurations are updated accordingly.

2This operational semantics was not described in [18], and is therefore developed specifically for
this project.
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S1,H1 ` e1 ⇓ λx . e3, S2,H2

S2,H2 ` e2 ⇓ v1, S3,H3

S3,H3 ` e3 [x 7→ v1] ⇓ v2, S4,H4

S1,H1 ` e1 e2 ⇓ v2, S4,H4

(Application)

• This rule pertains to the application of two expressions. The first, e1, evaluates

to an abstraction of a variable, x, from another expression, e3. The second ex-

pression is shown to compute to a value, v1, which is substituted for all instances

of x in e3. After the substitution, the resultant expression is shown to evaluate to

the value, v2. All computations update the stack and heap.

S1,H1 ` e1 ⇓ true, S2,H2

S2,H2 ` e2 ⇓ v1, S3,H3

S1,H1 ` if e1 then e2 else e3 ⇓ v1, S3,H3
(Conditional-True)

• The rule above represents a conditional statement that executes the true branch.

e1 is the guard of the conditional statement, which evaluates to true. There-

fore, e2 is evaluated, which results in v1, and is the final result of computing the

conditional.

S1,H1 ` e1 ⇓ false, S2,H2

S2,H2 ` e3 ⇓ v1, S3,H3

S1,H1 ` if e1 then e2 else e3 ⇓ v1, S3,H3
(Conditional-False)

• The reverse of the above rule represents a conditional statement that executes the

false branch, as its guard, e1, evaluates to false. Therefore, the evaluation of

e3 presents the final value of computation, v1.

S1,H1 ` e1 ⇓ v1, S2,H2

..

Sn,Hn ` en ⇓ vn, Sn+1,Hn+1

h(e1, ..,en) ⇓ v2

S1,H1 ` h(e1, ..,en) ⇓ v2, S2,H2
(Operation)
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• Here, the evaluation of an arbitrary function, h, is given. Its parameters are

expressions, which evaluate to their respective values. Performing the operation,

with the values of the expressions, results in the final value, v2.

S1,H1 ` C.m : T ⇓ λxs . e, S2,H2

S2,H2 ` args ⇓ v1, S3,H3

S3,H3 ` e [xs 7→ v1] ⇓ v2, S4,H4

S1,H1 ` C.m : T args ⇓ v2, S4,H4

(Method Call)

• This rule pertains to a method call or invocation. A method is identified by its

unique tuple of its class name, method name, and disambiguating type. The body

of a method consists of expressions that are abstractions of its method registers.

The values of the argument registers, args, are assigned to the method registers,

xs.

S1(ret_result) = v1

S1,H1 ` ret_result ⇓ v1, S1,H1
(a)

S1(t) = v1

S1,H1 ` t ⇓ v1, S1,H1
(b)

S1(s) = v1

S1,H1 ` s ⇓ v1, S1,H1
(c)

H1(S1(s)) ( f ) = v1

S1,H1 ` s. f ⇓ v1, S1,H1
(d)

H1(S1(t)) ( f ) = v1

S1,H1 ` t. f ⇓ v1, S1,H1
(e)

H1(C) ( f ) = v1

S1,H1 ` C. f ⇓ v1, S1,H1
(f)
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H1(C) = v1

S1,H1 ` C ⇓ v1, S1,H1
(g)

• The rules above are for variable lookups in the stack or heap, for the (a) return

value register; (b) target register; (c) source register; (d), (e), (f), object registers

containing fields; and (g) class index, respectively. All of these produce values.



Chapter 5

Implementation

This chapter presents the implementation of the Light Android and Light FuncDroid

programs, as designed in the previous chapters. Figure 5.1 provides an idea of the

implementation, specifying the steps of the procedure.

Figure 5.1: An overview of the translation procedure.

5.1 Light Android

The Light Android program takes as input a text file generated by dexdump using

the Dalvik Executable, classes.dex. The file contains all of the classes defined in a

particular application, along with information regarding its methods, registers, instance

and static fields, instructions, etc. The file is read and processed line by line, in order

to decode it.

49
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The output consists of Light Android instructions, derived from the Dalvik opcodes

in a method body, which we are most interested in. The Light Android program also

stores information about all of the classes, such as the number of registers a method

uses, as extracted from the dexdump text file.

5.1.1 Program Structure

The Ins (instruction) class defines the format of a Light Android instruction, which

consists of an operation name, followed by a list of target(s) and a list of source(s).

These lists contain register names or values.

Op_name [Target] [Source]

The LightAndroid class consists of multiple objects; where an object is a Scala con-

struct for creating a unique instance or singleton object of a class. The most notable is

the object dex, which contains all of the functions, namely decode_line, decode_op

and extra_data, that deal with processing the input file. The data structure of Light

Android consists of various objects such as superclass, static_field, interface,

to store information about classes, including maps from a class to its superclass(es), its

static field(s), and the interface(s) it implements, respectively.

These objects will be elaborated upon in the following sections1.

5.1.2 Storing data

All components of a class have their respective object to store information. For exam-

ple, the interface(s) a class implements is stored in an object, interface. It comprises

a map with the class as the key, and a list to store the interface(s) it implements, as the

value, as shown in Listing 5.1. Typical operations like adding a new entry to the map (a

new class and its interfaces), updating an existing entry (to add an interface to the list,

for a particular class), and printing these entries, are included. A class’s superclass,

static fields and instance fields are handled similarly.

e.g. Class→ [Interface]

1Dealing with arrays and exceptions has been omitted from this explanation.
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type Class = String

type Interface = Class

object interface {

private val tb = Map[Class, List[Interface]]()

Listing 5.1: The map from a class to a list of interfaces it implements.

Figure 5.2: Illustration of program entry and flow. The input is the text file generated

from dexdump, which is processed line by line to decode and store information.

The method object consists of a table storing its information. A method is uniquely

identified by its class, name, and type, used as the map’s key. The corresponding

value is the tuple containing – the method’s arguments, the method body containing

instructions with their labels, and the method’s registers. The arguments, body and

registers of a particular method can be accessed individually. Functions include adding

a new entry of a method with its arguments and registers into the map, and adding an

instruction to the body of a particular method.

Class, Name, Type→ Arguments, Body, Registers

The switch object consists of a table of information regarding switch cases. Recall

that switch cases are handled in two parts – a) the switch instruction, packed- switch

s l or sparse-switch s l, specifying the register to test, s, and the label of its data

payload location, l, and b) the data payload, containing the list of target labels to jump

to.

The map’s key is the tuple containing – a method’s class, name, type, and label of the
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data payload. The key’s value is the label of the original switch instruction (packed-

switch s l or sparse-switch s l) and the register to test, s. New entries can be

added, and the instruction label and source register can also be individually retrieved.

Class, Name, Type, Payload_Label→ Instruction_Label, Source_Register

5.1.3 Dealing with input

Extracting patterns from the text file:

Regular expressions are used to extract desired patterns such as class names and method

names, as well as to distinguish between opcodes. There exist maps from the regular

expression patterns to its String-equivalent, for ease of use in the program.

Converting opcode names to Light Android operation names:

Each regex pattern matching an opcode is mapped to its corresponding Light Android

operation name according to Table 3.1. This mapping captures the conversion of op-

code names to Light Android operation names. For example, the opcodes nop and

goto are mapped to "op" and "jmp" in LightAndroid, respectively.

For some of the operations – specifically, packed-switch, sparse-switch and their

data payloads packed-switch-payload and sparse-switch-payload – these rep-

resentations are intermediary and are not the final Light Android operation name; they

need to be handled further.

Therefore, to distinguish them from the final conversions of other opcodes having the

same operation name, they are annotated differently. They are dealt with in the func-

tion, decode_line, as detailed in the next subsection.

Decoding each input line:

The input file is processed line by line and passed as a parameter to the function,

decode_line, in object dex. This function finds matches for patterns in the line and

stores the value in its respective data structure. This is illustrated in Listing 5.2.

case Some(pat(name)) =>

found_pattern = true

patTag(pat) match {

case "CLASS" => cls = name
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case "SUPERCLASS" => superclass.insert(cls, name)

Listing 5.2: pat refers to a regex pattern from the entire list of patterns defined. patTag

maps a regex pattern to its String-equivalent. The snippet shows matching a class or

superclass, and storing it.

On encountering a line with code, the offset is extracted as well as the label of the in-

struction. These are converted from hexadecimal to decimal. The functions, decode_op

and extra_data, are called to decode opcodes, and deal with data payloads of switch

cases, respectively, as illustrated in Figure 5.2.

decode_op is invoked to get the Light Android instruction for a particular opcode, with

the opcode passed as the parameter. A Light Android instruction is returned according

to our conversion in Table 3.1. The format of the instruction is as described by the Ins

class, in Section 5.1.1.

The instruction and label are then inserted in the method body, along with the method

information (its class, name, and type), in the object, method.

Handling switch case instructions:

Instructions dealing with switch cases are identified in decode_line, as they need

further processing, as mentioned earlier. packed-switch s l and sparse-switch

s l are converted to "jmp l". The label of this instruction, the label of its data payload,

l, and the register to test, s, are stored in the object, switch, for later reference by its

respective data payload.

For data payload instructions, packed-switch-payload and sparse-switch-

payload, the extracted offset is passed to the extra_data function to get the target

labels. This is detailed in the next subsection. The label of the switch instruction and

the register to test, s, stored earlier, are retrieved.

These instructions are translated to "jmp ls s", where ls is the list of target labels relative

to the original switch instruction.

Reading data payloads from the Dalvik Executable:

The extra_data function is used to read switch tables and consists of an offset as a

parameter. Unlike the rest of the program that uses the text file from the disassembler

to extract information, this function accesses the Dalvik Executable, classes.dex,

which contains Dalvik bytecode.
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This is because the data payloads of the switches, packed-switch s l and sparse-

switch s l, are not given in the text file. The locations of the data payloads are

specified by offsets, l, in these instructions, which denote the position to seek in the

classes.dex file.

The format of the data payloads consists of the following, in order:

• an identifying pseudo opcode (in short, ident), of type, unsigned short – 0x0100

(256, in decimal) for packed-switch-payload and 0x0200 (512, in decimal)

for sparse-switch-payload.

• the size, of type, unsigned short – number of table entries.

• packed-switch-payload consists of the first key of type, int; this is the first

and lowest switch case value. sparse-switch-payload consists of a list of key

values, sorted in ascending order.

• a list of target labels (denoted by ls) – list of branch targets, where the offset is

relative to the original switch opcode and not this table.

On identifying the type of switch and retrieving the size of the table, the bytes are read

according to their format, and the list of target labels is returned.

5.1.4 Opcode Details

Method invocation with a return result:

A non-void method returns a (single-word, double-word or an object) result, which

is stored in its return value register by an appropriate return opcode. An invocation

on such a method is immediately followed by move-result t, where t specifies the

register to store this return value of the invoked method. However, this allocation to t

is not made explicit in the Dalvik code, as the move-result opcode only specifies the

target register and not the source.

In Light Android, we attempt to allude to this operation by introducing an additional

argument, ret_result. This dedicated return value register is used in the implementation

for this purpose, which stores the value from the source register in a non-void return

instruction. It does not represent an actual register or its contents from the Dalvik

code. The Light Android translation for move-result t is thus mov t ret_result,
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similar to instructions having a target and source register, and the method invocation

instruction, inv, also contains this argument.

Abstraction of operations:

The function, h, is used as an abstraction; initially, we did not store the details of this

function or its different instances. op is simply used to denote an operation, regardless

of its nature, since we do not give importance to the operation performed. Similarly for

jmp, we do not distinguish between the kinds of conditional jumps. The main purpose

of this is to leave out the details that aren’t necessary for our analysis, for the modelling

of effects.

Opcodes specifying an allocation but not mapped to mov:

In the implementation, sget, sput, iget, and iput do not get mapped to mov; they

retain their original opcode name. This is to differentiate their format from other mov

instructions that do not pertain to fields, to know when to extract and deal with the field

and object register. Similarly, const, which allocates a value to a register, retains its

opcode name.

However, in the next stage of converting them to enriched lambda expressions, they do

get translated to an expression denoting allocation, as they would if converted to mov.

Therefore, it is just a design choice that affects the intermediate translation; it does

not correspond to our earlier mapping, but ultimately refers to the same semantics and

format.

5.1.5 Changes made to Light Android

The first step to incorporating this piece of work into the project was to test and briefly

analyse it, to have a working knowledge of the program. Perhaps the simplest way to

accomplish the first is via blackbox testing: providing an input to the program and ob-

serving its output, without examining the internal workings of the program. This also

proves the functionality of the program. The latter was accomplished by an informal

code review, which gave better insight into the workings of the program.

On testing the program with sample apps, two minor bugs were found and corrected.

• The first being the incorrect form of argument registers of a method, due to a

mistake in its formatting.
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• The second was the imprecise extraction of a String value, which erroneously

included the String’s hashcode in the name.

Light Android was designed to primarily focus on providing an abstraction for mod-

elling effects, as mentioned earlier. However, in this project, we attempt to evaluate

programs with the help of evaluators, as detailed in the next chapter. A code review

revealed the need for a few changes and additions, due to this difference in purpose.

These include:

• Changing the data structure for the switch cases, to store the indexes/keys of the

list of target labels. This was initially absent, as determining which target label

the program jumps to, was not required. This change needed to be implemented

to compare the source register’s value with the indexes.

• The list of target labels returned for the data payloads of switch cases were not

in order, and therefore had to be corrected. This was necessary to precisely

determine the target label according to its index, for evaluation.

• One major change was storing the operation performed for each instruction. This

was discarded in the earlier implementation as values did not need to be com-

puted. This is especially important for evaluating op instructions, to determine

the operation to be performed.

• Similar to the above, another change was made in the pattern extraction for op-

codes translated to the jmp instructions. They were only distinguished based on

them carrying out a unary or binary operation, omitting the specific compari-

son that is to be performed. New patterns were introduced to capture all of the

variations to store them separately.

5.2 Light FuncDroid

The Light FuncDroid program processes the output of Light Android, which is a list

of label and instruction pairs. As its output, it translates the instructions into lambda

expressions. The Light FuncDroid program was implemented from scratch for this

project, and the overall code is given in A.1.
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5.2.1 Program Structure

The first implementation step is to retrieve the instructions from Light Android, for

a particular method; using its class name, method name and type. The program then

retrieves the registers used by the method, and its body, which contains the required

list of labels and instructions. These labels and instructions are then serialised and

stored, before being translated into Light FuncDroid expressions. This process can be

visualised in Figure 5.3. More specific details about the procedure are given in the

following sections.

5.2.2 Storing data

Serialising instructions:

The labels in Dalvik code are not consecutive. Therefore, simply incrementing the

label in the expressions, to refer to the next instruction, would be erroneous. Thus,

all of the instructions are stored with an index, which we use for incrementation. An

instruction can then be retrieved by its label or index.

Class, Name, Type, Index→ (Label, Instruction)

Class, Name, Type, Label→ Index

Storing the lambda expressions:

The instructions are processed, one by one, to be translated into lambda expressions, as

given in Table 4.1. However, to aid this translation, we make use of an expression class,

to define a clear data structure. It helps to define the format of a lambda expression, as

well as to store the expression in the form of distinct terms. These terms correspond to

the syntax we have described in 4.1. This makes it easier for further processing, such

as for evaluation.

For example, an abstraction is made distinct from other terms, by its specific case class

called Abs, which takes a list of terms (e.g. variables) followed by another term (the

body of the abstraction). Register names are stored as variables, denoted by the term

Var. A code snippet for this is shown below.
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Figure 5.3: Illustration of program entry and flow, beginning with an arbitrary method

call. The body and registers of this method are obtained from the Light Android data

structure. The instructions in the body are serialised and translated to functional ex-

pressions.

abstract class Exp

case class Abs (xs:List[Exp], e:Exp) extends Exp {override def

toString = "\\" + xs.map(x => x.toString).foldLeft("")(_+ " " +_)

+ " . " + e}

case class Var (s:String) extends Exp {override def toString = s}

The lambda expressions are then stored, along with the operation performed, with their

respective label as the key, as shown below. Functions include getting the operation or

expression, by specifying – a given label, class name, method name, and its type.

Class, Name, Type, Label→ (Operation, Expression)
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5.2.3 Translating Light Android instructions

As mentioned earlier, a Light Android instruction consists of an operation name, fol-

lowed by a list of target(s) and a list of source(s). The operation name is identified

through pattern matching. After that, the instruction variant must also be recognised,

for it to be handled correctly. This can be done by examining the lists of targets (ac-

cessed by ins.ta in the code) and sources (accessed by ins.src in the code), which

have differentiable characteristics for each instruction variant.

The resultant expression for each instruction is of the same form: an abstraction of the

method registers from its body, which can be any other term. The operation names,

and how some of their instruction variants are distinguished between and handled, are

briefly discussed below.

• jmp :

An unconditional jump, or an instruction of type jmp l, is recognised by its

empty sources’ list. The translated expression’s body consists of an application

of the specified label, to the method registers, xs. The expression is encoded in

a term, Cond, that represents a conditional branch or if-statement. Here, Star()

signifies the unconditional nature of the jump, and is equivalent to the Boolean

"true" in a conditional guard. Its usage is shown in the code extract below.

if (ins.src.length == 0) { // source list is empty, unconditional

jump

val exp = Abs(xs, Cond(Star(), ins.ta.map(x => App(Lab(x.toInt),

xs))))

A conditional jump may consist of one or two source registers to test and are

of the form jmp l s and jmp l s s’. Their targets’ list consists of one target

label.

The translated expression’s body consists of the term, Cond, that represents a

conditional branch or if-then-else statement. Here, the guard of the conditional

is an operation on the source register(s) from the list of sources. Possible jumps

include: to the specified label if the comparison evaluates to "true", or to the

next label otherwise; these are stored in the form of applications to the method

registers. This is shown in the code extract below.
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else if (ins.ta.length == 1) { // conditional jump, only one target

label

val exp = Abs(xs, Cond(Op(ins.src.map(x => Var(x))),

App(Lab(next_label), xs)::

ins.ta.map(x => App(Lab(x.toInt), xs))))

The resultant lambda expression’s body for jmp ls s consists of the term for

a conditional statement: with the equality test to perform and check, and the

application of the target labels to the method registers as its "true" branch, and

the application of the next label to the method registers as its "false" branch.

Here, the next label is the one after the original switch instruction, and not the

data payload table.

else { // switches, more than one target label

// get label of the original switch instruction (packed-switch

or sparse-switch)

val orglabel = la.switch.orglabel(cls, name, typ, l)

.

.

val exp = Abs(xs, Cond(Op(ins.src.map(x => Var(x))),

App(Lab(next_label), xs)::

ins.ta.map(x => App(Lab(x.toInt), xs))))

• op :

The translated expression for op contains the application of the next label to the

method registers, as shown below.

if (ins.ta.isEmpty && ins.src.isEmpty) { // no operands

val exp = Abs(xs, App(Lab(next_label), xs))

The lambda expression for all other instructions of type "op" consists of an as-

signment to the target register, with the Let term. The value of this assignment

is the result of the operation performed on the source register(s). The scope of

this assignment is the next label, therefore the expression consists of an appli-

cation of the next label to the method registers. The formation of the translated

expression can be seen below.
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else { // src.length >=1

val exp = Abs(xs, Let(Var(ins.ta.head),

Op(ins.src.map(x => Var(x))),

App(Lab(next_label), xs)))

• ret :

ret and ret s are distinguished by the list of sources. This is because the

former has an empty list, as it does not return anything.

The translated expressions for these instructions thus either include a term of

type "Unit" or a variable term containing the return value register, as demon-

strated below.

if (ins.src.isEmpty) { // returns unit (nothing)

val exp = Abs(xs, Unit())

.

.

else { // assuming the source list contains only one variable

val exp = Abs(xs, Var(ins.src.head))

• inv :

The sources’ list consists of the identifying details of the invoked method, ap-

pended with the arguments. The targets’ list consists of a default return register.

The resultant lambda expression for this instruction consists of a function, which

is the invoked method, applied with the arguments; the result or return value of

which is assigned to the target register. The method is defined as a function

(Fun) with its class name (Cls), method name (Nam), and its disambiguating

type (Typ). The scope of this is the next label applied to the method registers.

The corresponding implementation for this can be seen below.

val s = ins.src // src = [cls, name, typ] ++ args

val t = s.tail.tail.tail // getting the args from the src

val exp = Abs(xs, Let(Var(ins.ta.head),

App(Fun(Cls(s(0)), Nam(s(1)), Typ(s(2))),

t.map(x => Var(x))), // C.m:T args

App(Lab(next_label), xs)))
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• mov :

The value of the source register is assigned to the target register specified. Both

registers are stored as variables, in the term, Var. The scope of this assignment

is the next label, therefore the expression consists of an application of the next

label to the method registers. This can be seen in the code extract below. The

other "mov" instruction variants are handled similarly.

val exp = Abs(xs, Let(Var(ins.ta.head),

Var(ins.src.head),

App(Lab(next_label), xs)))

• new :

The list of targets consists of the target register, specified for storing the reference

of the new instance created. It is assigned the value, "unit". The expression

makes use of the Let term, for the assignment.

// new t C

val exp = Abs(xs, Let(Var(ins.ta.head),

Unit(),

App(Lab(next_label), xs)))



Chapter 6

Evaluation

Chapters 3 and 4 describe the operational semantics for the programs, Light Android

and Light FuncDroid, respectively, which determine how terms are evaluated. This

chapter follows through with a partial implementation. It attempts to display the cor-

respondence between the translations, such that the meaning of the original program

is retained. We show the transition from an Android application written in Java, to

it being compiled to Dalvik code, then translated to Light Android instructions, and

finally converted to lambda expressions.

Figure 6.1: We show that all three test routes evaluate to the same result.

63
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The Android app is built and run, to display the result of the program. Evaluators have

been designed that present the results of evaluating Light Android instructions and

Light FuncDroid expressions. This is done specifically for test cases that are simple.

For the purposes of this work, we shall restrict our attention to integer operations and

manipulating String values only. Additionally, only the stack is modelled; thus, opera-

tions involving instance and static fields, and classes are not dealt with.

The following sections provide an overview of the implementation details of the eval-

uators, after which the test cases and the results are presented.

6.1 Implementation Overview

Both of the evaluators are similar in design, and consist of four main objects that carry

out tasks as given below.

Invoking methods:

An invoke function takes a class name, method name, and its type as parameters. The

Light Android evaluator retrieves the specified method’s body from the Light An-

droid program, which returns a list of label and Light Android instruction tuples. It

also stores the last invoked method’s details for future reference, specifically for the

move-result instructions that deal with the result, or return value, of the invoked

method. The Light FuncDroid evaluator retrieves the method’s body from the Light

FuncDroid program, which returns a list of label and lambda expression tuples.

Instruction storage and handling:

The labels in Dalvik code are not consecutive. Therefore, we map all of the instruc-

tions to a serialised index, so as to know which instruction comes next, with a simple

increment. An instruction/expression can then be retrieved with a specific index or its

label.

Class, Name, Type, Index→ (Label, Instruction)

Class, Name, Type, Label→ Index
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Storing register names and values:

The register names used in instructions are stored with their values. Functions include

inserting a new register and value pair, and retrieving the value of a specified register.

Since the evaluators also deal with method invocations, we avoid the overlap of similar

register names by specifying the disambiguating method details (its class, name and

type).

Class, Name, Type, Register→ Value

Decoding and evaluation:

The evaluation starts by computing the value of the first instruction/expression in a

method body and then follows the program execution flow, incorporating loops and

jumps. Decoding the instructions or expressions thus returns the next index to move

to, as shown in Listing 6.1. Encountering a return instruction terminates the evalua-

tion as expected, and the return value of a method can be used as our final result for

comparison.

while (index >= 0 && index <= size) {

var ins = inst.get_ins(cls, name, typ, index)

index = decode(cls, name, typ, index, ins)

}

Listing 6.1: The evaluation procedure; receiving the next index after decoding an

instruction (for the Light Android evaluator), starting from the first.

6.1.1 Light Android Evaluator

As mentioned earlier, the evaluation starts from the first Light Android instruction.

Pattern matching with case classes is used to identify the instruction type and is dealt

with accordingly. It is also defined whether the evaluation moves to the next instruction

or to a specified label, depending on the type of instruction.

For example, a const instruction that allocates a value to a register always moves to

the next instruction, whereas a jmp instruction may move to a different label in the

next step, and this label must be determined based on the particular testing operation.

Further details on how each instruction is dealt with are given below.
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• const:

Instructions of this type involve a target register and a value. A new entry is

inserted in the registers’ mapping, assigning the given value to the register name,

as shown in the code excerpt below.

case "const" =>

register.insert(cls, name, typ, targets.head, sources.head)

• mov :

Instructions of this type move the contents of the given source register to the

target register. The register mapping updates the target register’s value to that of

the source register’s.

However, the instruction that deals with moving the result of the most recent

method invocation, move-result, is dealt with differently. As alluded to earlier,

the last invoked method’s details are stored for this very purpose. Its return value

is then retrieved from the default return value register. The value is stored in the

target register.

These operations can be seen in the code snippet below.

case "MOV" =>

val va = register.get_val(cls, name, typ, sources.head)

register.insert(cls, name, typ, targets.head, va)

case "MOVRESULT" =>

// get the class, name and type of the last invoked method

val inv_cls = inv.get_class

val inv_name = inv.get_name

val inv_typ = inv.get_typ

// get the value in its return value register

val va = register.get_val(inv_cls, inv_name, inv_typ, def_reg)

register.insert(cls, name, typ, targets.head, va)

• op :

Instructions of this type specify an operation to be performed; it can be unary

or binary. The operation is identified and then the operands are used to compute
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the result. The resulting value is stored in the specified target register.

For example, a binary operation for addition with three arguments; the first being

the target register and the other two being source registers, which serve as the

operands. The code corresponding to this operation can be seen below.

case "ADD3" =>

val dest = targets.head

val operands = sources.map(x => register.get_val(cls, name, typ,

x))

register.insert(cls, name, typ, dest,

(operands.map(_.toInt).reduceLeft((x, y) => x +

y)).toString())

• jmp :

Instructions of this type specify an unconditional or conditional jump to an in-

struction label, and are dealt with differently depending on the particular test

function.

An example of a conditional jump can be seen below, that specifies a relational

comparison between the source register’s value and zero, that it is greater than

or equal to zero. If the guard evaluates to true, then the jump is made to the

specified label. Otherwise the index of the next instruction is returned.

case "IFGEZ" =>

val l = targets.head // target label

val s0 = register.get_val(cls, name, typ, sources.head).toInt

if (s0 >= 0) inst.get_index(cls, name, typ, l)

else i + 1

• ret :

On encountering a return instruction, the evaluation is terminated. The program

does not move to any next instruction. If a method returns a value, then this

value is stored in its dedicated return value register.

val def_reg = "v" // default return value register

.

.
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case "RETVOID" =>

case "RET" =>

val va = register.get_val(cls, name, typ, sources.head)

register.insert(cls, name, typ, def_reg, va)

• inv :

Instructions of this type invoke a method, using its unique information: class

name, method name, and type. If a method is invoked with arguments, then the

values of these arguments must be passed to the callee method.

In order to do this, we retieve the argument registers defined for the callee, and

then assign them values of the caller methods’ argument registers. This process

can be visualised by a code excerpt given below.

// argument registers passed by the caller method

val arg = sources.tail.tail.tail

// get the callee method’s registers

val arg_reg = la.method.args(n_cls, n_name, n_typ) match {

case Some(lst) =>

if (!lst.isEmpty) {

for (i <- 0 to arg.length - 1) { // for each argument

register passed by the caller

var va = register.get_val(cls, name, typ, arg(i)) // get

its value

register.insert(n_cls, n_name, n_typ, lst(i), va) //

store in callee method’s registers

}

}

case None =>

}
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6.1.2 Light FuncDroid Evaluator

The Light FuncDroid evaluator mimics the structure and design of the Light Android

evaluator, reusing components that deal with certain operations, with slight modifi-

cations only. Evaluation starts from the first expression and moves according to the

program flow, depending on the kind of expression encountered. There are three main

types of expressions that are the result of translating Light Android instructions to

lambda expressions: an assignment, a conditional statement, and a variable which

contains the return value register of a method. The details on how these expressions

are evaluated are given below:

Assignment

Most Light Android instructions are converted to Light FuncDroid expressions in the

form: let target = source in scope.

• Target:

The destination is in the form of a target register’s name stored in a variable term,

which is retrieved as shown below.

// destination

ea match {

// register

case Var(t) =>

target = t

case _ =>

}

• Source:

The source differs and can be of different types, involving different procedures

for evaluation.

(a) Source - constant value and source register:

It can be a source register’s value or a constant value, which are extracted as

shown below.
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// source

eb match {

// register

case Var(s) =>

source = register.get_val(cls, name, typ, s)

// value

case Const(s) =>

source = s

(b) Source - return value of invoked method:

It can be the return value of an invoked method. The arguments are register

names stored as variables. The method is defined as a function with its class

name, method name, and its disambiguating type.

We pass the list of argument registers to our invoke function, which then per-

forms the invocation. The processing of the argument registers and the invoca-

tion is similar to that in the Light Android evaluator1. After that, we can retrieve

the return value of the method and use it as our source value.

// invoke

case App(Fun(Cls(n_cls), Nam(n_name), Typ(n_typ)), ls) =>

var arg_reg = List[String]()

ls.foreach (elem => elem match {

case Var(x) =>

arg_reg = x :: arg_reg // collect each argument register

case _ =>

})

arg_reg = arg_reg.reverse

invoke(n_cls, n_name, n_typ, h, arg_reg)

source = register.get_val(n_cls, n_name, n_typ, target) // get

the return value of the invoked method

1Refer to the evaluation of the inv instruction in sub-section 6.1.1, for the details.
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(c) Source - result of a specified operation:

It can be the result of a specified operation with one or more operands, which

are stored as register names. We retrieve the operand registers and pass it to our

op function, that performs the operation with the operands and returns the result.

The computation is handled similarly as in the Light Android evaluator2.

// op

case Op(ls) =>

var operand_reg = List[String]()

ls.foreach( elem => elem match {

case Var(x) =>

operand_reg = x :: operand_reg // collect each register as

an operand

case _ =>

})

operand_reg = operand_reg.reverse

source = op(cls, name, typ, h, operand_reg)

If-then-else conditional

Light Android "jmp" instructions are represented by if-then-else statements in Light

FuncDroid. There are two kinds of conditional expressions to be evaluated, the details

of which are given below.

• Unconditional jump:

An unconditional jump consists of a Star() term as its condition, which rep-

resents the unconditional nature of the jump, or that it always evaluates to its

true branch. The index of the specified label is retrieved and returned, for the

evaluation to proceed to that index.

// unconditional jump

case Star() =>

es.head match { // get the label to jump to

case App(Lab(l), xs) => lfd.inst.get_index(cls, name, typ,

l.toString)

case _ => -1 }

2Refer to the evaluation of the op instruction in sub-section 6.1.1, for an example.
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• Conditional jump:

A conditional jump involves performing a relational comparison with one or

two operands. The operands are extracted in a similar fashion as in the case of

dealing with a unary or binary operation, as demonstrated previously.

The index of the label specified, if the test succeeds, is stored as jump_

index. The index of the next label, if the test fails, is stored as next_index.

// get the label to jump to, if test succeeds

es.last match {

case App(Lab(l), xs) =>

jump_index = lfd.inst.get_index(cls, name, typ, l.toString)

case _ =>

}

// get the next label to jump to, if test fails

es.head match {

case App(Lab(l), xs) =>

next_index = lfd.inst.get_index(cls, name, typ, l.toString)

case _ =>

}

The specified test is identified and performed. Accordingly, either the jump_index

is returned, or the next_index. The tests are carried out in a similar fashion as

presented for the Light Android evaluator3.

However, the next label to jump to, if the condition evaluates to false, is different

for conditional jumps representing switch cases. The next label is with respect to

the original switch instruction. Additionally, the label to jump to is determined

from a list of target labels, as opposed to just one. Therefore, determining the

jump_index is handled differently, comparing the operand’s (source register’s

value) with the indexes of the list of target labels.

Return value register

A return instruction from a non-void method consists of a register that contains the

return value. This register is encoded as a variable, in Light FuncDroid. On encounter-

3Refer to the evaluation of the jmp instruction in sub-section 6.1.1, for an example.
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ing this expression, we retrieve the value from the specified register and store it in the

default return value register, ret_result. Then, the evaluation stops as we have reached

the end of the method.

A lambda expression with just unit as its term represents a void method’s return in-

struction, that does not return anything. On encountering this expression we simply

stop the evaluation, without any further processing.

6.2 Test Cases

This section presents test cases for evaluation. We present the original program written

in Java and the result of running it, along with its compiled Dalvik code. The resultant

Light Android instructions, and the Light FuncDroid expressions are also given. The

results of their evaluation are presented in the form of register values.

The purpose is to compute values, and ultimately to demonstrate the similarity in re-

sults between the different translations, and as compared to the original program. The

examples appear to be trivial but perform several operations. They cover a range of

Dalvik opcodes, including: addition, subtraction, division, finding the remainder, rela-

tional comparisons, etc.

It also covers varied program structures, such as loops and conditionals, including them

being nested. Its simplicity allows one to clearly see what the expected result should

be, at once.

Experimental set-up:

• Test data: 10 Android apps and their APK files.

• Environment: Mac OS X 10.13.3, Android Studio 3.1, Scala IDE 4.4.1.

Procedure:

• Build and run the Android app on a device or emulator. View the result in the

Logcat [8] window, in Android Studio.

The Log class is used to write messages, which can then be viewed as shown in

Figure 6.2.
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Figure 6.2: A Log.i (information) message consists of a tag and a message. The tag

can then be searched in the Logcat window, to display the message.

• Build and unzip the app’s APK file4.

• Use dexdump to convert the classes.dex file into a readable text file.

• Record the Dalvik code compiled.

• Use the classes.dex and dexdump text files as input to the translation pro-

grams.

• Record the instructions and expressions generated, and run the evaluators.

• Observe and compare results.

6.2.1 Factorial

This test case computes the factorial of a given number, which in this case is 720 for

the number, 6. A while loop is used to perform the calculation. We can see from the

evaluator results that both the Light Android instructions, as well as the Light Func-

Droid expressions, return the same result – 720, when evaluated. This result is stored

in the register, v1. The program also returns "720" as its result, as can be seen below.

4Refer to Figures 2.4 and 2.5.
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Program in Java:

int a = 6;

int fact = 1;

while(a>0){

fact *= a;

a -= 1;

}

return fact;

Dalvik code:

0000: const/4 v0, #int 6

0001: const/4 v1, #int 1

0002: if-lez v0, 0008

0004: mul-int/2addr v1, v0

0005: add-int/lit8 v0, v0, #int -1

0007: goto 0002

0008: return v1

Light Android instructions:

0: const [v0] [6]

1: const [v1] [1]

2: jmpi f-lez [8] [v0]

4: opmul-int/2addr [v1] [v1, v0]

5: opadd-int/lit8 [v0] [v0, -1]

7: jmp [2] []

8: ret [] [v1]

Light Android Evaluator result:

v0 -> 0

v1 -> 720
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Light FuncDroid expressions:

0: λ v0 λ v1 . let v0 = 6 in (1) v0 v1

1: λ v0 λ v1 . let v1 = 1 in (2) v0 v1

2: λ v0 λ v1 . if opi f-lez(v0) then (8) v0 v1 else (4) v0 v1

4: λ v0 λ v1 . let v1 = opmul-int/2addr(v1, v0) in (5) v0 v1

5: λ v0 λ v1 . let v0 = opadd-int/lit8(v0, -1) in (7) v0 v1

7: λ v0 λ v1 . (2) v0 v1

8: λ v0 λ v1 . v1

Light FuncDroid Evaluator result:

v0 -> 0

v1 -> 720

6.2.2 Prime number

This test case checks if a given number is prime or not. It consists of a nested condi-

tional in a loop that checks whether the number is divisible by another number, other

than 1 and itself. "true" is returned if the number is prime and, "false" otherwise. We

can see from the evaluator results that both the translation programs return "true" for

the number 11, which is a prime number. This value is stored in the register, v2. The

program also returns "true" as its result, as can be seen below.
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Program in Java:

int number = 11;

String result = "true";

for(int i=2; i<number; i++){

if(number%i==0){

result = "false";

break;

}

}

return result;

Dalvik code:

0000: const/16 v1, #int 11

0002: const-string/jumbo v2, "true"

0005: const/4 v0, #int 2

0006: if-ge v0, v1, 000f

0008: rem-int v3, v1, v0

000a: if-nez v3, 0010

000c: const-string/jumbo v2,

"false"

000f: return-object v2

0010: add-int/lit8 v0, v0, #int 1

0012: goto 0006

Light Android instructions:

0: const [v1] [11]

2: const [v2] ["true"]

5: const [v0] [2]

6: jmpi f-ge [15] [v0, v1]

8: oprem-int [v3] [v1, v0]

10: jmpi f-nez [16] [v3]

12: const [v2] ["false"]

15: ret [] [v2]

16: opadd-int/lit8 [v0] [v0, 1]

18: jmp [6] []

Light Android Evaluator result:

v0 -> 11

v1 -> 11

v2 -> "true"

v3 -> 1

Light FuncDroid expressions:

0: λ v0 λ v1 λ v2 λ v3 . let v1 = 11 in (2) v0 v1 v2 v3

2: λ v0 λ v1 λ v2 λ v3 . let v2 = "true" in (5) v0 v1 v2 v3

5: λ v0 λ v1 λ v2 λ v3 . let v0 = 2 in (6) v0 v1 v2 v3
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6: λ v0 λ v1 λ v2 λ v3 . if opi f-ge(v0, v1) then (15) v0 v1 v2 v3

else (8) v0 v1 v2 v3

8: λ v0 λ v1 λ v2 λ v3 . let v3 = oprem-int(v1, v0) in (10) v0 v1

v2 v3

10: λ v0 λ v1 λ v2 λ v3 . if opi f-nez(v3) then (16) v0 v1 v2 v3

else (12) v0 v1 v2 v3

12: λ v0 λ v1 λ v2 λ v3 . let v2 = "false" in (15) v0 v1 v2 v3

15: λ v0 λ v1 λ v2 λ v3 . v2

16: λ v0 λ v1 λ v2 λ v3 . let v0 = opadd-int/lit8(v0, 1) in

(18) v0 v1 v2 v3

18: λ v0 λ v1 λ v2 λ v3 . (6) v0 v1 v2 v3

Light FuncDroid Evaluator result:

v0 -> 11

v1 -> 11

v2 -> "true"

v3 -> 1

6.2.3 Switch case (sparse-switch)

This test case demonstrates the use of switch case that results in the sparse-switch

opcode. The cases are stored in the form of a list of target labels, which lead to the

respective instructions carrying out the desired operations. The indexes of this list, for

the target labels, are retrieved from the Dalvik executable file. The value of the register

to test, v0, is 5 and used to find a match in the indexes. The results show that for the

number 5, indeed the value "five" (in v1) is returned, as expected. The program also

returns "five" as its result, as can be seen below.
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Program in Java:

int number = 5;

String res = "";

switch(number){

case 10: res = "ten";

break;

case 1: res = "one";

break;

case 50: res = "fifty";

break;

case 90: res = "ninety";

break;

case 5: res = "five";

break;

}

return res;

Dalvik code:

0000: const/4 v0, #int 5

0001: const-string/jumbo v1, ""

0004: sparse-switch v0, 0000001c

0007: return-object v1

0008: const-string/jumbo v1, "ten"

000b: goto 0007

000c: const-string/jumbo v1, "one"

000f: goto 0007

0010: const-string/jumbo v1, "fifty"

0013: goto 0007

0014: const-string/jumbo v1, "ninety"

0017: goto 0007

0018: const-string/jumbo v1, "five"

001b: goto 0007

001c: sparse-switch-data (22 units)
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Light Android instructions:

0: const [v0] [5]

1: const [v1] [""]

4: jmp [28] []

7: ret [] [v1]

8: const [v1] ["ten"]

11: jmp [7] []

12: const [v1] ["one"]

15: jmp [7] []

16: const [v1] ["fifty"]

19: jmp [7] []

20: const [v1] ["ninety"]

23: jmp [7] []

24: const [v1] ["five"]

27: jmp [7] []

28: jmp [12, 24, 8, 16, 20] [v0]

Light Android Evaluator result:

v0 -> 5

v1 -> "five"

Light FuncDroid expressions:

0: λ v0 λ v1 . let v0 = 5 in (1) v0 v1

1: λ v0 λ v1 . let v1 = "" in (4) v0 v1

4: λ v0 λ v1 . (28) v0 v1

7: λ v0 λ v1 . v1

8: λ v0 λ v1 . let v1 = "ten" in (11) v0 v1

11: λ v0 λ v1 . (7) v0 v1

12: λ v0 λ v1 . let v1 = "one" in (15) v0 v1

15: λ v0 λ v1 . (7) v0 v1

16: λ v0 λ v1 . let v1 = "fifty" in (19) v0 v1

19: λ v0 λ v1 . (7) v0 v1

20: λ v0 λ v1 . let v1 = "ninety" in (23) v0 v1

23: λ v0 λ v1 . (7) v0 v1

24: λ v0 λ v1 . let v1 = "five" in (27) v0 v1
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27: λ v0 λ v1 . (7) v0 v1

28: λ v0 λ v1 . if opvalue=index(v0) then [(12), (24), (8), (16),

(20)] v0 v1 else (7) v0 v1

Light FuncDroid Evaluator result:

v0 -> 5

v1 -> "five"

6.2.4 Switch case (packed-switch)

This test case demonstrates the use of switch case that results in the packed-switch

opcode. This happens when the values are consecutive, as opposed to them being

spread out like the previous test case (that resulted in the sparse-switch opcode).

The cases are stored in the form of a list of target labels, which lead to the respective

instructions carrying out the specific operations. Only the first or lowest index of this

list, for the target labels, can be retrieved from the Dalvik executable file. Therefore,

we keep incrementing that index value by one for each consecutive target label in the

list.

The value of the register to test, v0, is used to find a match in the indexes. If there is

no match, the jump is made to the label after the switch instruction, which in our case

is the label, 8, that stores "other" in the resultant String.

The results of evaluation show that for the number 10, the value "other" is stored in v1

as the return value, as we’d expect. The program also returns "other" as its result, as

can be seen below.
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Program in Java:

int number = 10;

String res = "";

switch(number){

case 1: res = "one";

break;

case 2: res = "two";

break;

case 4: res = "four";

break;

case 5: res = "five";

break;

default: res = "other";

break;

}

return res;

Dalvik code:

0000: const/16 v0, #int 10

0002: const-string/jumbo v1, ""

0005: packed-switch v0, 0000001c

0008: const-string/jumbo v1, "other"

000b: return-object v1

000c: const-string/jumbo v1, "one"

000f: goto 000b

0010: const-string/jumbo v1, "two"

0013: goto 000b

0014: const-string/jumbo v1, "four"

0017: goto 000b

0018: const-string/jumbo v1, "five"

001b: goto 000b

001c: packed-switch-data (14 units)
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Light Android instructions:

0: const [v0] [10]

2: const [v1] [""]

5: jmp [28] []

8: const [v1] ["other"]

11: ret [] [v1]

12: const [v1] ["one"]

15: jmp [11] []

16: const [v1] ["two"]

19: jmp [11] []

20: const [v1] ["four"]

23: jmp [11] []

24: const [v1] ["five"]

27: jmp [11] []

28: jmp [12, 16, 8, 20, 24] [v0]

Light Android Evaluator result:

v0 -> 10

v1 -> "other"

Light FuncDroid expressions:

0: λ v0 λ v1 . let v0 = 10 in (2) v0 v1

2: λ v0 λ v1 . let v1 = "" in (5) v0 v1

5: λ v0 λ v1 . (28) v0 v1

8: λ v0 λ v1 . let v1 = "other" in (11) v0 v1

11: λ v0 λ v1 . v1

12: λ v0 λ v1 . let v1 = "one" in (15) v0 v1

15: λ v0 λ v1 . (11) v0 v1

16: λ v0 λ v1 . let v1 = "two" in (19) v0 v1

19: λ v0 λ v1 . (11) v0 v1

20: λ v0 λ v1 . let v1 = "four" in (23) v0 v1

23: λ v0 λ v1 . (11) v0 v1

24: λ v0 λ v1 . let v1 = "five" in (27) v0 v1

27: λ v0 λ v1 . (11) v0 v1

28: λ v0 λ v1 . if opvalue=index(v0) then [(12), (16), (8), (20),
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(24)] v0 v1 else (8) v0 v1

Light FuncDroid Evaluator result:

v0 -> 10

v1 -> "other"

6.2.5 Palindrome

This test case checks if a given number is a palindrome or not. It takes a number and

reverses its digits, and compares the reverse to the original number. If the two numbers

are equal, it returns "true", and returns "false" otherwise. The resultant Light Android

instructions and Light FuncDroid expressions both evaluate to "true", for the number

10401, as stored in v4. The program also returns "true" as its result, as can be seen

below.
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Program in Java:

int num = 10401;

int number = num;

int reverse = 0;

int digit = 10000;

while(number>0){

reverse +=

(number%10)*digit;

number /= 10;

digit /= 10;

}

if (num == reverse) return

"true";

else return "false";

Dalvik code:

0000: const/16 v1, #int 10401

0002: move v2, v1

0003: const/4 v3, #int 0

0004: const/16 v0, #int 10000

0006: if-lez v2, 0011

0008: rem-int/lit8 v4, v2, #int 10

000a: mul-int/2addr v4, v0

000b: add-int/2addr v3, v4

000c: div-int/lit8 v2, v2, #int 10

000e: div-int/lit8 v0, v0, #int 10

0010: goto 0006

0011: if-ne v1, v3, 0017

0013: const-string/jumbo v4, "true"

0016: return-object v4

0017: const-string/jumbo v4,

"false"

001a: goto 0016
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Light Android instructions:

0: const [v1] [10401]

2: mov [v2] [v1]

3: const [v3] [0]

4: const [v0] [10000]

6: jmpi f-lez [17] [v2]

8: oprem-int/lit8 [v4] [v2, 10]

10: opmul-int/2addr [v4] [v4, v0]

11: opadd-int/2addr [v3] [v3, v4]

12: opdiv-int/lit8 [v2] [v2, 10]

14: opdiv-int/lit8 [v0] [v0, 10]

16: jmp [6] []

17: jmpi f-ne [23] [v1, v3]

19: const [v4] ["true"]

22: ret [] [v4]

23: const [v4] ["false"]

26: jmp [22] []

Light Android Evaluator result:

v0 -> 0

v1 -> 10401

v2 -> 0

v3 -> 10401

v4 -> "true"

Light FuncDroid expressions:

0: λ v0 λ v1 λ v2 λ v3 λ v4 . let v1 = 10401 in (2) v0 v1 v2 v3 v4

2: λ v0 λ v1 λ v2 λ v3 λ v4 . let v2 = v1 in (3) v0 v1 v2 v3 v4

3: λ v0 λ v1 λ v2 λ v3 λ v4 . let v3 = 0 in (4) v0 v1 v2 v3 v4

4: λ v0 λ v1 λ v2 λ v3 λ v4 . let v0 = 10000 in (6) v0 v1 v2 v3 v4

6: λ v0 λ v1 λ v2 λ v3 λ v4 . if opi f-lez(v2) then (17) v0 v1 v2 v3

v4 else (8) v0 v1 v2 v3 v4

8: λ v0 λ v1 λ v2 λ v3 λ v4 . let v4 = oprem-int/lit8(v2, 10) in (10)

v0 v1 v2 v3 v4

10: λ v0 λ v1 λ v2 λ v3 λ v4 . let v4 = opmul-int/2addr(v4, v0) in (11)

v0 v1 v2 v3 v4

11: λ v0 λ v1 λ v2 λ v3 λ v4 . let v3 = opadd-int/2addr(v3, v4) in (12)

v0 v1 v2 v3 v4
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12: λ v0 λ v1 λ v2 λ v3 λ v4 . let v2 = opdiv-int/lit8(v2, 10) in (14)

v0 v1 v2 v3 v4

14: λ v0 λ v1 λ v2 λ v3 λ v4 . let v0 = opdiv-int/lit8(v0, 10) in (16)

v0 v1 v2 v3 v4

16: λ v0 λ v1 λ v2 λ v3 λ v4 . (6) v0 v1 v2 v3 v4

17: λ v0 λ v1 λ v2 λ v3 λ v4 . if opi f-ne(v1, v3) then (23) v0 v1 v2

v3 v4 else (19) v0 v1 v2 v3 v4

19: λ v0 λ v1 λ v2 λ v3 λ v4 . let v4 = "true" in (22) v0 v1 v2 v3

v4

22: λ v0 λ v1 λ v2 λ v3 λ v4 . v4

23: λ v0 λ v1 λ v2 λ v3 λ v4 . let v4 = "false" in (26) v0 v1 v2 v3

v4

26: λ v0 λ v1 λ v2 λ v3 λ v4 . (22) v0 v1 v2 v3 v4

Light FuncDroid Evaluator result:

v0 -> 0

v1 -> 10401

v2 -> 0

v3 -> 10401

v4 -> "true"

6.2.6 Check if a sum is even

This test case mainly demonstrates the usage of a nested loop, and its evaluation. The

program merely checks if the sum of two consecutive numbers, in the range 1 to 5, is

even. It returns "true" if it is, and "false" otherwise. The results from the evaluators

show that both the Light Android instructions and the Light FuncDroid expressions

evaluate to "true", as stored in v2. The program also returns "true" as its result, as can

be seen below.
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Program in Java:

String result = "false";

for(int i=1;i<=5;i++){

for(int j=i+1; j<=5; j++){

if((i+j)%2==0){

result = "true";

}

}

}

return result;

Dalvik code:

0000: const/4 v4, #int 5

0001: const-string/jumbo v2,

"false"

0004: const/4 v0, #int 1

0005: if-gt v0, v4, 001a

0007: add-int/lit8 v1, v0, #int 1

0009: if-gt v1, v4, 0014

000b: add-int v3, v0, v1

000d: rem-int/lit8 v3, v3, #int 2

000f: if-nez v3, 0017

0011: const-string/jumbo v2, "true"

0014: add-int/lit8 v0, v0, #int 1

0016: goto 0005

0017: add-int/lit8 v1, v1, #int 1

0019: goto 0009

001a: return-object v2
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Light Android instructions:

0: const [v4] [5]

1: const [v2] ["false"]

4: const [v0] [1]

5: jmpi f-gt [26] [v0, v4]

7: opadd-int/lit8 [v1] [v0, 1]

9: jmpi f-gt [20] [v1, v4]

11: opadd-int [v3] [v0, v1]

13: oprem-int/lit8 [v3] [v3, 2]

15: jmpi f-nez [23] [v3]

17: const [v2] ["true"]

20: opadd-int/lit8 [v0] [v0, 1]

22: jmp [5] []

23: opadd-int/lit8 [v1] [v1, 1]

25: jmp [9] []

26: ret [] [v2]

Light Android Evaluator result:

v0 -> 6

v1 -> 6

v2 -> "true"

v3 -> 1

v4 -> 5

Light FuncDroid expressions:

0: λ v0 λ v1 λ v2 λ v3 λ v4 . let v4 = 5 in (1) v0 v1 v2 v3 v4

1: λ v0 λ v1 λ v2 λ v3 λ v4 . let v2 = "false" in (4) v0 v1 v2 v3

v4

4: λ v0 λ v1 λ v2 λ v3 λ v4 . let v0 = 1 in (5) v0 v1 v2 v3 v4

5: λ v0 λ v1 λ v2 λ v3 λ v4 . if opi f-gt(v0, v4) then (26) v0 v1 v2

v3 v4 else (7) v0 v1 v2 v3 v4

7: λ v0 λ v1 λ v2 λ v3 λ v4 . let v1 = op v0 1 in (9) v0 v1 v2 v3

v4

9: λ v0 λ v1 λ v2 λ v3 λ v4 . if opi f-gt(v1, v4) then (20) v0 v1 v2

v3 v4 else (11) v0 v1 v2 v3 v4

11: λ v0 λ v1 λ v2 λ v3 λ v4 . let v3 = opadd-int(v0, v1) in

(13) v0 v1 v2 v3 v4

13: λ v0 λ v1 λ v2 λ v3 λ v4 . let v3 = oprem-int/lit8(v3, 2) in
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(15) v0 v1 v2 v3 v4

15: λ v0 λ v1 λ v2 λ v3 λ v4 . if opi f-nez(v3) then (23) v0 v1 v2 v3

v4 else (17) v0 v1 v2 v3 v4

17: λ v0 λ v1 λ v2 λ v3 λ v4 . let v2 = "true" in (20) v0 v1 v2 v3

v4

20: λ v0 λ v1 λ v2 λ v3 λ v4 . let v0 = opadd-int/lit8(v0, 1) in

(22) v0 v1 v2 v3 v4

22: λ v0 λ v1 λ v2 λ v3 λ v4 . (5) v0 v1 v2 v3 v4

23: λ v0 λ v1 λ v2 λ v3 λ v4 . let v1 = opadd-int/lit8(v1, 1) in

(25) v0 v1 v2 v3 v4

25: λ v0 λ v1 λ v2 λ v3 λ v4 . (9) v0 v1 v2 v3 v4

26: λ v0 λ v1 λ v2 λ v3 λ v4 . v2

Light FuncDroid Evaluator result:

v0 -> 6

v1 -> 6

v2 -> "true"

v3 -> 1

v4 -> 5

6.2.7 Get the minimum of two numbers

This test case demonstrates a method invocation without passing any arguments. It

shows the invoked method finding the minimum of two numbers, 40 and 50, and re-

turning the result. The caller method then stores this result. Both the Light Android

instructions and Light FuncDroid expressions show the value 40 being retrieved from

the return value register, v, of the callee, and stored by the caller method in v0. The

program also stores "40" as its result, as can be seen below.

We present the code in Java, Dalvik code, Light Android instructions, and Light Func-

Droid expressions for both the caller and callee methods. Though the evaluation shows

the register values of the caller method only, both methods have been evaluated to get

the result.
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Program in Java:

public static void

invoke_method() {

int result = get_min();

}

public static int get_min() {

int a = 40;

int b = 50;

if(a < b) return a;

else return b;

}

Dalvik code:

0000: invoke-static {},

Lcom/example/harmony/simpleinvoke/

MainActivity;.get_min:()I

0003: move-result v0

0004: return-void

0000: const/16 v0, #int 40

0002: const/16 v1, #int 50

0004: if-ge v0, v1, 0007

0006: return v0

0007: move v0, v1

0008: goto 0006
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Light Android instructions:

0: inv [v]

[Lcom/example/harmony/

simpleinvoke/MainActivity;,

get_min, ()I]

3: mov [v0] [v]

4: ret [] []

0: const [v0] [40]

2: const [v1] [50]

4: jmpi f-ge [7] [v0, v1]

6: ret [] [v0]

7: mov [v0] [v1]

8: jmp [6] []

Light Android Evaluator result:

v0 -> 40

v -> 40

Light FuncDroid expressions:

0: λ v0 . let v = (Lcom/example/harmony/simpleinvoke/MainActivity;

.get_min:()I) in (3) v0

3: λ v0 . let v0 = v in (4) v0

4: λ v0 . unit

0: λ v0 λ v1 . let v0 = 40 in (2) v0 v1

2: λ v0 λ v1 . let v1 = 50 in (4) v0 v1

4: λ v0 λ v1 . if opi f-ge(v0, v1) then (7) v0 v1) else (6) v0 v1

6: λ v0 λ v1 . v0

7: λ v0 λ v1 . let v0 = v1 in (8) v0 v1

8: λ v0 λ v1 . (6) v0 v1
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Light FuncDroid Evaluator result:

v0 -> 40

v -> 40

6.2.8 Get the maximum of two numbers

This test case demonstrates a method invocation with arguments passed. It shows the

caller method passing two numbers, 10 and 20. The callee method calculates the max-

imum of the two numbers and then returns the result, which is retrieved by the caller.

Both the Light Android instructions and Light FuncDroid expressions show the value

20 being retrieved from the return value register, v, of the callee, and stored by the

caller method in v2. The program also stores "20" as its result, as can be seen below.

We present the code in Java, Dalvik code, Light Android instructions, and Light Func-

Droid expressions for both the caller and callee methods. Though the evaluators show

the register values of the caller method only, both methods have been evaluated to get

the result.
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Program in Java:

public static void

invoke_example() {

int a = 10;

int b = 20;

int result = get_max(a, b);

}

public static int get_max(int a,

int b) {

if(a > b) return a;

else return b;

}

Dalvik code:

0000: const/16 v0, #int 10

0002: const/16 v1, #int 20

0004: invoke-static {v0, v1},

Lcom/example/harmony/invokeexample

/MainActivity;.get_max:(II)I

0007: move-result v2

0008: return-void

0000: if-le v0, v1, 0003

0002: return v0

0003: move v0, v1

0004: goto 0002
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Light Android instructions:

0: const [v0] [10]

2: const [v1] [20]

4: inv [v] [Lcom/example/harmony/

invokeexample/MainActivity;,

get_max,(II)I, v0, v1]

7: mov [v2] [v]

8: ret [] []

0: jmpi f-le [3] [v0, v1]

2: ret [] [v0]

3: mov [v0] [v1]

4: jmp [2] []

Light Android Evaluator result:

v0 -> 10

v1 -> 20

v -> 20

v2 -> 20

Light FuncDroid expressions:

0: λ v0 λ v1 λ v2 . let v0 = 10 in (2) v0 v1 v2

2: λ v0 λ v1 λ v2 . let v1 = 20 in (4) v0 v1 v2

4: λ v0 λ v1 λ v2 . let v = (Lcom/example/harmony/invokeexample/

MainActivity;.get_max:(II)I) v0 v1 in (7) v0 v1 v2

7: λ v0 λ v1 λ v2 . let v2 = v in (8) v0 v1 v2

8: λ v0 λ v1 λ v2 . unit

0: λ v0 λ v1 . if opi f-le(v0, v1) then (3) v0 v1 else (2) v0 v1

2: λ v0 λ v1 . v0

3: λ v0 λ v1 . let v0 = v1 in (4) v0 v1

4: λ v0 λ v1 . (2) v0 v1
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Light FuncDroid Evaluator result:

v0 -> 10

v1 -> 20

v -> 20

v2 -> 20

6.2.9 Even or odd

This test case checks if a given number is even or odd, with the help of nested condi-

tionals in a while loop. It returns "even" if the number is even, and "odd" otherwise.

Evaluating the Light Android instructions and Light FuncDroid expressions, both re-

turn "odd" in v1, for the number 19. The program also returns "odd" as its result, as

can be seen below.
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Program in Java:

int number = 19;

String result = "";

while(number>=0){

if(number==0) {

result = "even";

number = -1;

}

else {

number -= 1;

if(number==0) {

result = "odd";

number = -1;

}

number -= 1;

}

}

return result;

Dalvik code:

0000: const/16 v0, #int 19

0002: const-string/jumbo v1, ""

0005: if-ltz v0, 0019

0007: if-nez v0, 000e

0009: const-string/jumbo v1, "even"

000c: const/4 v0, #int -1

000d: goto 0005

000e: add-int/lit8 v0, v0, #int -1

0010: if-nez v0, 0016

0012: const-string/jumbo v1, "odd"

0015: const/4 v0, #int -1

0016: add-int/lit8 v0, v0, #int -1

0018: goto 0005

0019: return-object v1
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Light Android instructions:

0: const [v0] [19]

2: const [v1] [""]

5: jmpi f-ltz [25] [v0]

7: jmpi f-nez [14] [v0]

9: const [v1] ["even"]

12: const [v0] [-1]

13: jmp [5] []

14: opadd-int/lit8 [v0] [v0, -1]

16: jmpi f-nez [22] [v0]

18: const [v1] ["odd"]

21: const [v0] [-1]

22: opadd-int/lit8 [v0] [v0, -1]

24: jmp [5] []

25: ret [] [v1]

Light Android Evaluator result:

v0 -> -2

v1 -> "odd"

Light FuncDroid expressions:

0: λ v0 λ v1 . let v0 = 19 in (2) v0 v1

2: λ v0 λ v1 . let v1 = "" in (5) v0 v1

5: λ v0 λ v1 . if opi f-ltz(v0) then (25) v0 v1 else (7) v0 v1

7: λ v0 λ v1 . if opi f-nez(v0) then (14) v0 v1 else (9) v0 v1

9: λ v0 λ v1 . let v1 = "even" in (12) v0 v1

12: λ v0 λ v1 . let v0 = -1 in (13) v0 v1

13: λ v0 λ v1 . (5) v0 v1

14: λ v0 λ v1 . let v0 = opadd-int/lit8(v0, -1) in (16) v0 v1

16: λ v0 λ v1 . if opi f-nez(v0) then (22) v0 v1 else (18) v0 v1

18: λ v0 λ v1 . let v1 = "odd" in (21) v0 v1

21: λ v0 λ v1 . let v0 = -1 in (22) v0 v1

22: λ v0 λ v1 . let v0 = opadd-int/lit8(v0, -1) in (24) v0 v1

24: λ v0 λ v1 . (5) v0 v1

25: λ v0 λ v1 . v1
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Light FuncDroid Evaluator result:

v0 -> -2

v1 -> "odd"

6.2.10 Sum of numbers in a range

This test case calculates the sum of numbers from 1 to a given number. However, the

numbers must be a multiple of 3 or 5. For the number 13, the sum is 45 (3+5+6+9+10+12).

The evaluator results demonstrate that for the number 13, the sum stored in v2 is in-

deed 45. The program also returns "odd" as its result, as can be seen below.
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Program in Java:

int sum = 0;

int number = 13;

for(int i=1; i<=number; i++){

if(i%3==0 || i%5==0)

sum += i;

}

return sum;

Dalvik code:

0000: const/4 v2, #int 0

0001: const/16 v1, #int 13

0003: const/4 v0, #int 1

0004: if-gt v0, v1, 0012

0006: rem-int/lit8 v3, v0, #int 3

0008: if-eqz v3, 000e

000a: rem-int/lit8 v3, v0, #int 5

000c: if-nez v3, 000f

000e: add-int/2addr v2, v0

000f: add-int/lit8 v0, v0, #int 1

0011: goto 0004

0012: return v2
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Light Android instructions:

0: const [v2] [0]

1: const [v1] [13]

3: const [v0] [1]

4: jmpi f-gt [18] [v0, v1]

6: oprem-int/lit8 [v3] [v0, 3]

8: jmpi f-eqz [14] [v3]

10: oprem-int/lit8 [v3] [v0, 5]

12: jmpi f-neqz [15] [v3]

14: opadd-int/2addr [v2] [v2, v0]

15: opadd-int/lit8 ADD2L [v0] [v0, 1]

17: jmp [4] []

18: ret [] [v2]

Light Android Evaluator result:

v0 -> 14

v1 -> 13

v2 -> 45

v3 -> 3

Light FuncDroid expressions:

0: λ v0 λ v1 λ v2 λ v3 . let v2 = 0 in (1) v0 v1 v2 v3

1: λ v0 λ v1 λ v2 λ v3 . let v1 = 13 in (3) v0 v1 v2 v3

3: λ v0 λ v1 λ v2 λ v3 . let v0 = 1 in (4) v0 v1 v2 v3

4: λ v0 λ v1 λ v2 λ v3 . if opi f-gt(v0, v1) then (18) v0 v1 v2 v3

else (6) v0 v1 v2 v3

6: λ v0 λ v1 λ v2 λ v3 . let v3 = oprem-int/lit8(v0, 3) in (8) v0 v1

v2 v3

8: λ v0 λ v1 λ v2 λ v3 . if opi f-eqz(v3) then (14) v0 v1 v2 v3 else

(10) v0 v1 v2 v3

10: λ v0 λ v1 λ v2 λ v3 . let v3 = oprem-int/lit8(v0, 5) in (12) v0 v1

v2 v3

12: λ v0 λ v1 λ v2 λ v3 . if opi f-neqz(v3) then (15) v0 v1 v2 v3 else

(14) v0 v1 v2 v3

14: λ v0 λ v1 λ v2 λ v3 . let v2 = opadd-int/2addr(v2, v0) in (15) v0

v1 v2 v3

15: λ v0 λ v1 λ v2 λ v3 . let v0 = opadd-int/lit8(v0, 1) in (17) v0 v1
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v2 v3

17: λ v0 λ v1 λ v2 λ v3 . (4) v0 v1 v2 v3

18: λ v0 λ v1 λ v2 λ v3 . v2

Light FuncDroid Evaluator result:

v0 -> 14

v1 -> 13

v2 -> 45

v3 -> 3
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Results and Discussion

Light Android:

This project aimed to extract functions in the form of lambda expressions from Android

apps. A preliminary step of this was to convert Dalvik code into an abstract analysis

language called Light Android, which was part of existing work done. The methodical

extraction of data from the Dalvik executable, accomplished in previous work, served

as a springboard for our current work.

However, the initial purpose of the work done was to design an effect system for the

behavioral analysis of Android apps, resulting in the design choice of abstracting oper-

ations performed. The evaluation of the light assembly code and functional expressions

was not intended. Therefore, adjustments were made in the code to better align with

our goals, which were easily incorporated, as the code was flexible to change.

The operational semantics for Light Android was obtained as a work in progress, which

was a helpful starting point. On first glance, it seemed like a trivial job to use it, as

it is, and explain the inference rules. However, on close inspection, some changes

needed to be made for clarity and accuracy. Therefore, the semantics that we present

are a refined version, with modifications. This invariably took a considerable amount

of time to work out, as opposed to what we initially thought.

Delving into the details of Dalvik opcodes and understanding their behaviour was no

mean feat, particularly those dealing with method invocations and switch cases. Al-

though most of them were intuitive and simple to understand, it was a matter of te-

diousness due to its sheer number. In particular, how Dalvik handles the return value

103
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of an invoked method and returns it to a caller method was not made specific. Addi-

tionally, the format of switch cases’ data payload had to be understood, and how they

are evaluated by comparing a register’s value to a set of table indexes.

The data payload is not extracted by pattern matching from a text file, like the rest of

the instructions and app information. Rather, the bytecode had to be read form the

Dalvik executable. One of the two variants, of the opcodes dealing with switch cases,

only specified the first and lowest index. The procedure of evaluating instructions, and

how the rest of the indexes are processed based on the first index, were unclear at first.

However, with synthesised examples, more reading, and progress made in the project,

the details were made clearer. This in-depth understanding was also essential for grasp-

ing the intuition behind the translation of Dalvik opcodes to our light assembly code,

before moving forward to the next implementation step. All things considered, there

was significant work put into researching the pre-existing background, both in terms

of acquiring the basics and understanding the existing work done.

Light FuncDroid:

The Light FuncDroid program was successfully developed to convert Light Android

instructions into functional expressions. The program works without any errors, as far

as we know, based on the test runs on sample programs. Indeed, multiple revisions

were necessary, to fix bugs that arose from the testing, and also for general improve-

ment of the program structure.

The bulk of the implementation done in this project was undoubtedly developing the

Light FuncDroid program. The formal design, including its operational semantics, and

the implementation were developed from scratch. Furthermore, having no previous

knowledge of lambda calculus, as well as minimal experience in functional program-

ming, meant additional time spent in learning the fundamentals outlined in Section

2.1.

Evaluators:

Evaluators for both of the translation programs have been designed, based on an example-

driven approach. The coverage of programs that can be evaluated is limited, and not

exhaustive, as we present these evaluations for illustrative purposes only; to demon-

strate similarity in results. However, we cover a considerably wide range of opcodes.

Additionally, it also provides confidence in our implementation, suggesting correspon-



Chapter 7. Results and Discussion 105

dence to the original program.

General opcodes that define allocation of (String or Integer) values and return state-

ments are fundamental to the evaluation. The evaluators are able to handle more than

20 kinds of binary and unary operations, and all 12 kinds of relational comparisons,

only excluding operations such as shift-right, shift-left and bitwise operations (AND,

OR, XOR). Additionally, the coverage also extends to method invocations and switch

cases, both of which were initially rather tricky to evaluate, as alluded to earlier.

We also presented 10 simple test cases, showing the full cycle of an Android app writ-

ten in Java being compiled to Dalvik code, being converted to light assembly code or

Light Android instructions, and finally to functional expressions. The equivalence of

evaluation results is evident, due to its basic nature and as compared to the original pro-

gram’s results. They appear to be trivial due to their simplicity, however we attempted

to cover varied operations and program structures, as described in Section 6.2.

Extensions:

There definitely a few extensions that can be made to the work done in this project,

mainly to include more cases or specific instances.

First off, we have omitted the explanation of instructions dealing with arrays. The

operational semantics for Light Android and Light FuncDroid can be extended to deal

with the corresponding instructions. Secondly, the coverage of evaluators can indeed

be expanded to deal with more types of values and also handle object registers, to

operate on fields. This will allow us to have test cases across a broader range.
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Future Work

As mentioned in the beginning, this project is part of a broader research for a mo-

bile security analysis framework, for the behavioural analysis of Android apps. The

functional representation that has been developed will be used as input to an automated

verification tool. A type system will be used to check the functional expressions against

security properties, e.g. whether an uncommon or malicious call-sequence appears.

In this chapter, we briefly explore some of these concepts, which are in the research

phase only and have not yet been implemented.

We introduce the typing rules used to capture unwanted behaviours in apps. A type

and effect system is proposed, whereby the side-effect of evaluating a term is captured.

A simple abstracted scenario is considered where we model an unwanted behavioural

pattern as follows:

• f and g are functions we are interested in.

• N represents the set of functions we are interested in collecting, containing f and

g.

• The main specification is that f must not be executed before g.

The corresponding typing rules are presented below:

` x & {[ε]}
(Variable)

f ε N
` f & {[ f ]}

(Function)

106
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` t1 & U1 ` t2 & U2

` t1 t2 & U2 U1
(Application)

` t & u
` λx. t & U

(Abstraction)

` t1 & U1 ` t2 & U2

` cond (?, t1, t2) & U1 ∪ U2
(Conditional)

The first rule specifies that when a variable is encountered, nothing is collected – rep-

resented by the empty word, ε. The second rule with regards to a function checks if

the function is in the set of functions that we are interested in. If it is present in the set,

then we collect it. The next few rules collect the effects in U .

0start 1 2

ε

f

ε

g

ε

In the form of a behaviour automaton, our scenario can be represented as above, for

illustration purposes. The alphabet of the language captured by the automaton is Σ =

{ f ,g,ε}. Analysing each input word in Σ gives us the following sets, which represent

the set of states a particular word can reach (as can be seen from the automaton):

ε : 0→{0} f : 0→{0,1} g : 0→{0}

1→{1} 1→{1} 1→{1,2}

2→{2} 2→{2} 2→{2}

f . f : 0→{0,1} f .g+ : 0→{0,1,2} g.g : 0→{0}

1→{1} 1→{1,2} 1→{1,2}

2→{2} 2→{2} 2→{2}

g. f : 0→{0,1}

1→{1,2}

2→{2}

From the proof of equivalence of sets, as presented in [25], we can conclude that f f
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and f are in the same equivalence class, as well as gg and g, since their sets are equal.

The classes can then be listed as:

[ε] = {ε} [ f g] = Σ
* f Σ

*gΣ
*

[ f ] = f + [g f ] = g+. f +

[g] = g+

Keeping the equivalence classes in mind, the following table can be constructed, taking

the union of each class with every class, including itself. The results of this can be seen

in Table 8.1.

[ε] [f] [g] [f g] [g f]

[ε] [ε] [f] [g] [f g] [g f]

[f] [f] [f] [f g] [f g] [g f]

[g] [g] [g f] [g] [f g] [g f]

[f g] [f g] [f g] [f g] [f g] [f g]

[g f] [g f] [g f] [f g] [f g] [f g]

Table 8.1: Equivalence classes.



Appendix A

Code Appendix

A.1 Light FuncDroid program

package lang

import scala.collection.mutable.Map

import scala.annotation.tailrec

/** Expression.

* Exp ::= Const (String) | Var (String) | Nam (String) | Cls (String) |

SFld (Cls, Nam) | IFld (Var, Nam) | Typ (String)

Fun (Cls, Nam, Typ) | ...

*/

abstract class Exp

case class Const (s:String) extends Exp {override def toString = s}

case class Var (s:String) extends Exp {override def toString = s}

case class Nam (s:String) extends Exp {override def toString = s}

case class Cls (s:String) extends Exp {override def toString = s}

case class SFld (cls:Cls, f:Nam) extends Exp {override def toString =

cls + "." + f}

case class IFld (v:Var, f:Nam) extends Exp {override def toString = v

+ "." + f}

case class Typ (s:String) extends Exp {override def toString = s}

case class Fun (cls:Cls, name:Nam, typ:Typ) extends Exp {override def
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toString = cls + "." + name + ":" + typ}

case class Op (xs:List[Exp]) extends Exp {override def toString =

"op" + xs.map(x => x.toString).foldLeft("")(_+ " " +_)}

case class Lab (i:Int) extends Exp {override def toString =

i.toString}

case class Abs (xs:List[Exp], e:Exp) extends Exp {override def

toString = xs.map(x => x.toString).foldLeft("")(_+ " \\ " +_) + "

. " + e}

case class App (ea:Exp, xs:List[Exp]) extends Exp {override def

toString = "(" + ea + ")" + xs.map(x =>

x.toString).foldLeft("")(_+ " " +_)}

case class Let (ea:Exp, eb:Exp, ec:Exp) extends Exp {override def

toString = "let " + ea + " = " + eb + " in " + ec}

case class Cond (c:Exp, es:List[Exp]) extends Exp {override def

toString = "cond(" + c + es.map(x => x.toString).foldLeft("")(_+

", " +_) + ")"}

case class Unit () extends Exp {override def toString = "unit"}

case class Star () extends Exp {override def toString = "*"}

case class Fix (v:Var, e:Exp) extends Exp {override def toString =

"fix(" + v + ", " + e + ")"}

class LightFuncDroid(_la:LightAndroid) {

def la:LightAndroid = _la

type Label = String

type Index = Int

type Operation = String

type Class = String

type Name = String

type MtdType = String

def invoke (cls: Class, name: Name, typ: MtdType) {

val xs =

la.method.regs(cls, name, typ) match {

case Some(lst) => lst.map(x => Var(x)) //adding all registers to
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a list

case None => List()

}

val bd = la.method.body(cls, name, typ)

bd match {

case Some(lst) =>

inst.initialise // initialise index, for each method

lst.reverse.map(x => inst.serialise(cls, name, typ, x._1, x._2))

// store each ins with an index, in order

lst.reverse.map(x => translate.ins2exp(cls, name, typ, x._1,

x._2, xs)) // translate ins to lambda exp

case None =>

}

}

def get_all(cls: Class, name: Name, typ: MtdType){

val size = inst.get_size(cls, name, typ)

for(i <- 0 to size - 1) {

var label = inst.get_label(cls, name, typ, i)

println(i + " " + label + " " + translate.get_operation(cls, name,

typ, label) +" " + translate.get_exp(cls, name, typ, label))

}

}

/**

* Store the instructions in a method’s body.

*/

object inst {

private val tb = Map[(Class, Name, MtdType, Index), (Label, Ins)]()

private val labels = Map[(Class, Name, MtdType, Label), Index]()

private val size = Map[(Class, Name, MtdType), Int]()

var index: Index = -1

// reset index
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def initialise {

index = -1

}

// storing each instruction with an index

def serialise(cls: Class, name: Name, typ: MtdType, l: Label, ins:

Ins) {

index += 1

val key = (cls, name, typ, index)

tb += (key -> (l, ins)) // store each label and instruction pair,

with an index

val l_key = (cls, name, typ, l)

labels += (l_key -> index) // store the index corresponding to a

label

val s_key = (cls, name, typ)

if (size contains s_key) size(s_key) += 1 // increment counter for

no. of instructions

else size += (s_key -> 1)

}

// get a particular instruction

def get_ins(cls: Class, name: Name, typ: MtdType, i: Index): Ins = {

val key = (cls, name, typ, i)

if (tb contains key) tb(key)._2

else new Ins("", "", List(), List())

}

// get the label of an ins, at a given index

def get_label(cls: Class, name: Name, typ: MtdType, i: Index): Label

= {

val key = (cls, name, typ, i)

if (tb contains key) tb(key)._1

else "Not found"

}
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// get the index of an ins, with a given label

def get_index(cls: Class, name: Name, typ: MtdType, l: Label): Index

= {

val l_key = (cls, name, typ, l)

if (labels contains l_key) labels(l_key)

else -1

}

def get_all_labels: Map [(Class, Name, MtdType, Label), Index] =

labels

// get all instructions

def get_all: Map[(Class, Name, MtdType, Index), (Label, Ins)] = tb

// get number of total instructions

def get_size(cls: Class, name: Name, typ: MtdType): Int = {

val s_key = (cls, name, typ)

if (size contains s_key) size(s_key)

else -1

}

} // object inst

/**

* Implements the translation procedure.

*/

object translate {

private val expr = Map[(Class, Name, MtdType, Label), (Operation,

Exp)]()

def get_all: Map[(Class, Name, MtdType, Label), (Operation, Exp)] =

expr

def get_operation(cls: Class, name: Name, typ: MtdType, l: Label):

Operation = {

val key = (cls, name, typ, l)



Appendix A. Code Appendix 114

if (expr contains key) expr(key)._1

else ""

}

def get_exp(cls: Class, name: Name, typ: MtdType, l: Label): Exp = {

val key = (cls, name, typ, l)

if (expr contains key) expr(key)._2

else Unit()

}

/** Converts instructions to enriched Lambda expressions, returns a

tuple containing a label and an Exp

* Takes an expression as a parameter.

*/

def ins2exp(cls: Class, name: Name, typ: MtdType, l:Label, ins:Ins,

xs:List[Exp]) {

var next_index = -1

var next_label = -1

val size = inst.get_size(cls, name, typ)

val current_index = inst.get_index(cls, name, typ, l)

if (current_index < size - 1) { // check if the next index/label

exists, exclude last instruction

next_index = current_index + 1

next_label = inst.get_label(cls, name, typ, next_index).toInt

}

ins.op match {

case "jmp" => if (ins.src.length == 0) { // source list is empty,

unconditional jump

val exp = Abs(xs, Cond(Star(), ins.ta.map(x =>

App(Lab(x.toInt), xs))))

expr += ((cls, name, typ, l) -> (ins.h, exp))

//apply each target label to xs

}
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else if (ins.ta.length == 1) { // conditional jump,

only one target label

val exp = Abs(xs, Cond(Op(ins.src.map(x => Var(x))),

App(Lab(next_label), xs) ::

ins.ta.map(x =>

App(Lab(x.toInt), xs))))

expr += ((cls, name, typ, l) -> (ins.h, exp))

}

else { // switches, more than one target label

// get label of the original switch instruction

(packed-switch/sparse-switch)

val orglabel = la.switch.orglabel(cls, name, typ, l)

// get the next index and label

next_index = inst.get_index(cls, name, typ,

orglabel) + 1

next_label = inst.get_label(cls, name, typ,

next_index).toInt

val exp = Abs(xs, Cond(Op(ins.src.map(x => Var(x))),

App(Lab(next_label), xs) ::

ins.ta.map(x =>

App(Lab(x.toInt), xs))))

expr += ((cls, name, typ, l) -> (ins.h, exp))

}

case "op" => if (ins.ta.isEmpty && ins.src.isEmpty) {// no

operands

val exp = Abs(xs, App(Lab(next_label), xs))

expr += ((cls, name, typ, l) -> (ins.h, exp))

}

else { // src.length >=1 and assuming the target list
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contains only one variable

val exp = Abs(xs, Let(Var(ins.ta.head),

Op(ins.src.map(x => Var(x))),

App(Lab(next_label), xs)))

expr += ((cls, name, typ, l) -> (ins.h, exp))

}

case "ret" => if (ins.src.isEmpty) { // returns unit (nothing)

val exp = Abs(xs, Unit())

expr += ((cls, name, typ, l) -> (ins.h, exp))

}

else { // assuming the source list contains only one

variable

val exp = Abs(xs, Var(ins.src.head))

expr += ((cls, name, typ, l) -> (ins.h, exp))

}

// ins.ta is always empty with "ret" commands

case "inv" => val s = ins.src // ta = [def_reg = "v"], src =

[cls, name, typ] ++ args

val t = s.tail.tail.tail //getting the args from the

src

val exp = Abs(xs, Let(Var(ins.ta.head),

App(Fun(Cls(s(0)), Nam(s(1)),

Typ(s(2))), t.map(x =>

Var(x))), // C.m:T args

App(Lab(next_label), xs)))

expr += ((cls, name, typ, l) -> (ins.h, exp))

case "mov" => val exp = Abs(xs, Let(Var(ins.ta.head), // assuming

ta.length & src.length == 1

Var(ins.src.head),

App(Lab(next_label), xs)))

expr += ((cls, name, typ, l) -> (ins.h, exp))
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case "const" => val exp = Abs(xs, Let(Var(ins.ta.head),

Const(ins.src.head),

App(Lab(next_label), xs)))

expr += ((cls, name, typ, l) -> (ins.h, exp))

case "iget" => val exp = Abs(xs, Let(Var(ins.ta.head),

IFld(Var(ins.src(0)),

Nam(ins.src(1))),

App(Lab(next_label), xs)))

expr += ((cls, name, typ, l) -> (ins.h, exp))

case "iput" => val exp = Abs(xs, Let(IFld(Var(ins.ta(0)),

Nam(ins.ta(1))),

Var(ins.src.head),

App(Lab(next_label), xs)))

expr += ((cls, name, typ, l) -> (ins.h, exp))

case "aget" => val exp = Abs(xs, Let(Var(ins.ta.head),

IFld(Var(ins.src(0)),

Nam(ins.src(1))),

App(Lab(next_label), xs)))

expr += ((cls, name, typ, l) -> (ins.h, exp))

case "aput" => val exp = Abs(xs, Let(IFld(Var(ins.ta(0)),

Nam(ins.ta(1))),

Var(ins.src.head),

App(Lab(next_label), xs)))

expr += ((cls, name, typ, l) -> (ins.h, exp))

case "sget" => val exp = Abs(xs, Let(Var(ins.ta.head),

SFld(Cls(ins.src(0)),

Nam(ins.src(1))),

App(Lab(next_label), xs)))

expr += ((cls, name, typ, l) -> (ins.h, exp))
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case "sput" => val exp = Abs(xs, Let(SFld(Cls(ins.ta(0)),

Nam(ins.ta(1))),

Var(ins.src.head),

App(Lab(next_label), xs)))

expr += ((cls, name, typ, l) -> (ins.h, exp))

case "new" => if (ins.src.length == 1) { // new t C or new t n

val exp = Abs(xs, Let(Var(ins.ta.head),

Unit(),

App(Lab(next_label), xs)))

expr += ((cls, name, typ, l) -> (ins.h, exp))

}

else { // new t #ns ns

val t = ins.ta.head

val ns = ins.src.tail // all src list elements

except the first

val fin:Exp = App(Lab(next_label), xs) // last

finishing expression

val f = (x:String, y:Exp) => Let(IFld(Var(t),

Nam(ns.indexOf(x).toString)), Const(x), y)

val exp = ns.foldRight(fin)(f)

expr += ((cls, name, typ, l) -> (ins.h, exp))

}

case _ =>

}

} // ins2exp ends

} // object translate ends

}
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